Skip to main content
Log in

Biodegradation of the herbicide propanil, and its 3,4-dichloroaniline by-product in a continuously operated biofilm reactor

  • Original Research Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The persistence of propanil in soil and aquatic environments along with the possible accumulation of toxic degradation products, such as chloroanilines, is of environmental concern. In this work, a continuous small-scale bioprocess to degrade the herbicide propanil, its main catabolic by-product, 3,4-dichloroaniline (3,4-DCA), and the herbicide adjuvants is carried out. A microbial consortium, constituted by nine bacterial genera, was selected. The isolated strains, identified by amplification and sequencing of their 16S rDNA, were: Acidovorax sp., Luteibacter (rhizovicinus), Xanthomonas sp., Flavobacterium sp., Variovorax sp., Acinetobacter (calcoaceticus), Pseudomonas sp., Rhodococcus sp., and Kocuria sp. The ability of the microbial consortium to degrade the herbicide was evaluated in a biofilm reactor at propanil loading rates ranging from 1.9 to 36.8 mg L−1 h−1. Complete removal of propanil, 3,4-DCA, chemical oxygen demand and total organic carbon was obtained at propanil loading rates up to 24.9 mg L−1 h−1. At higher loading rates, the removal efficiencies decayed. Four of the identified strains could grow individually in propanil, and 3,4-DCA: Pseudomonas sp., Acinetobacter calcoaceticus, Rhodococcus sp., and Xanthomonas sp. The Kokuria strain grew on 3,4-DCA, but not on propanil. The first three bacteria have been related to biodegradation of phenyl urea herbicides or chlorinated anilines. Although some strains of the genera Xanthomonas and Kocuria have a role in the biodegradation of several xenobiotic compounds, as far as we know, there are no reports about degradation of propanil by Xanthomonas or 3,4-DCA by Kocuria species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aburto A, Peimbert M (2011) Degradation of benzene-toluene mixture by hydrocarbon adapted bacterial communities. Ann Microbiol 61:553–562

    Article  CAS  Google Scholar 

  • Aburto A, Fahy A, Coulon F, Lethbridge G, Timmis KN, Ball AS, McGenity TJ (2009) Mixed aerobic and anaerobic microbial communities in benzene-contaminated groundwater. J Appl Microbiol 106:317–328

    Article  CAS  Google Scholar 

  • Ahmed RZ, Ahmed N, Gadd GM (2010) Isolation of two Kocuria species capable of growing on various polycyclic aromatic hydrocarbons. Afr J Biotechnol 9:3611–3617

    CAS  Google Scholar 

  • Albrecht K, Frisch G (1989) Liquid pesticidal compositions in the form of suspension concentrates. US Patent 4, 804, 399

    Google Scholar 

  • Bartha R (1971) Fate of herbicide-derived chloroanilines in soil. J Agr Food Chem 19:385–387

    Article  CAS  Google Scholar 

  • Bevinakatti HS, Waite AG (2012) Surfactant compounds. US Patent 8, 097, 564

    Google Scholar 

  • Call DJ, Poirier SH, Knuth ML, Harting SL, Lindberg CA (1987) Toxicity of 3,4-dichloroaniline to fathead minnows, Pimephales promelas, in acute and early life-stage exposures. Bull Environ Contam Toxicol 38:352–358

    Article  CAS  Google Scholar 

  • Carvalho G, Marques R, Lopes AR, Faria C, Noronha JP, Oehmen A, Nunes OC, Reis MAM (2010) Biological treatment of propanil and 3,4-dichloroaniline: kinetic and microbiological characterisation. Water Res 44:4980–4991

    Article  CAS  Google Scholar 

  • Correa IE, Steen WC (1995) Degradation of propanil by bacterial isolates and mixed populations from a pristine lake. Chemosphere 30:103–116

    Article  CAS  Google Scholar 

  • Cox C, Surgan M (2006) Unidentified inert ingredients in pesticides: implications for human and environmental health. Environ Health Persp 114:1803–1806

    CAS  Google Scholar 

  • Danchour A, Bitton G, Coste CM, Bastide J (1986) Degradation of the herbicide propanil in distilled water. Bull Environ Contam Toxicol 36:556–562

    Article  Google Scholar 

  • Dejonghe W, Berteloot E, Goris J, Boon N, Crul K, Maertens S, Höfte M, De Vos P, Verstraete W, Top EM (2003) Synergistic degradation of linuron by a bacterial consortium and isolation of a single linuron-degrading Variovorax strain. Appl Environ Microbiol 69:1532–1541

    Article  CAS  Google Scholar 

  • Eke KR, Barnden AD, Tester DJ (1996) Impact of agricultural pesticides on water quality. In: Hester RE, Harrison RM (eds) Agricultural chemicals and the environment. Issues in environmental science and technology, vol 5. The Royal Society of Chemistry, UK, pp 43–56

  • Felske A, Engelen B, Nübel U, Backhaus H (1996) Direct ribosome isolation from soil to extract bacterial rRNA for community analysis. Appl Environ Microbiol 62:4162–4167

    CAS  Google Scholar 

  • Galhano V, Gomes-Laranjo J, Fernández-Valiente E, Videira R, Peixoto F (2011) Impact of herbicides on non-target organisms in sustainable irrigated rice production systems: state of knowledge and future prospects. In: Kortekamp A (ed) Herbicides and environment. InTech, Rijeka, pp 45–72

    Google Scholar 

  • Garrido EM, Lima JLFC, Delerue-Matos C, Borges F, Silva AMS, Oliveira Brett AM (2001) Electrochemical oxidation of propanil and related N-substituted amides. Anal Chim Acta 434:35–41

    Article  CAS  Google Scholar 

  • Golby S, Ceri H, Gieg LM, Chatterjee I, Marques LL, Turner RJ (2012) Evaluation of microbial biofilm communities from an Alberta oil sands tailings pond. FEMS Microb Ecol 79:240–250

    Article  CAS  Google Scholar 

  • Gómez-De Jesús A, Romano-Baez FJ, Leyva-Amezcua L, Juárez-Ramírez C, Ruiz-Ordaz N, Galíndez-Mayer J (2009) Biodegradation of 2,4,6-trichlorophenol in a packed-bed biofilm reactor equipped with an internal net draft tube riser for aeration and liquid circulation. J Hazard Mater 161:1140–1149

    Article  Google Scholar 

  • Hildebrandt A, Lacorte S, Barceló D (2007) Assessment of priority pesticides, degradation products, and pesticide adjuvants in groundwaters and top soils from agricultural areas of the Ebro river basin. Anal Bioanal Chem 387:1459–1468

    Article  CAS  Google Scholar 

  • Hoagland RE, Zablotowicz RM, Locke MA (1994) Propanil metabolism by rhizosphere microflora. In: Anderson TA, CoatsJR (eds) Bioremediation through rhizosphere technology. ACS Symposium Series, vol 563. American Chemical Society, USA, pp 160–183

  • Hongsawat P, Vangnai AS (2011) Biodegradation pathways of chloroanilines by Acinetobacter baylyi strain GFJ2. J Hazard Mater 186:1300–1307

    Article  CAS  Google Scholar 

  • Hund-Rinke K, Simon M (2005) Terrestrial ecotoxicity of eight chemicals in a systematic approach. J Soils Sedim 5:59–65

    Article  CAS  Google Scholar 

  • Jak RG, Maas JL, Scholten MCTH (1998) Ecotoxicity of 3,4-dichloroaniline in enclosed freshwater plankton communities at different nutrient levels. Ecotoxicol 7:49–60

    Article  CAS  Google Scholar 

  • Janke D, Baskunov BP, Nefedova MY, Zyakun AM, Golovleva LA (1984) Incorporation of 18O2 during cometabolic degradation of 3-chloroaniline by Rhodococcus sp. An 117. J Basic Microbiol (Zeitschrift für allgemeine Mikrobiologie) 24(4):253-259. doi:10.1002/jobm.19840240411

  • Jones R (2005) The ecotoxicological effects of photosystem II herbicides on corals. Mar Pollut Bull 51:495–506

    Article  CAS  Google Scholar 

  • Ju K-S, Parales RE (2011) Evolution of a new bacterial pathway for 4-nitrotoluene degradation. Mol Microbiol 82:355–364

    Article  CAS  Google Scholar 

  • Karn SK, Chakrabarti SK, Reddy MS (2011) Degradation of pentachlorophenol by Kocuria sp. CL2 isolated from secondary sludge of pulp and paper mill. Biodegradation 22:63–69

    Article  CAS  Google Scholar 

  • Kaufman DD, Blake J (1973) Microbial degradation of several acetamide, acylanilide, carbamate, toluidine and urea pesticides. Soil Biol Biochem 5:297–308

    Article  CAS  Google Scholar 

  • Konstantinou IK, Sakkas VA, Albanis A (2001) Photocatalytic degradation of the herbicides propanil and molinate over aqueous TiO2 suspensions: identification of intermediates and the reaction. Appl Catal B-Environ 34:227–239

    Article  CAS  Google Scholar 

  • Leigh MB, Prouzová P, Macková M, Macek T, Nagle DP, Fletcher JS (2006) Polychlorinated biphenyl (PCB)-degrading bacteria associated with trees in a PCB-contaminated site. Appl Environ Microbiol 72:2331–2342

    Article  CAS  Google Scholar 

  • Mackay D, Shiu WY, Ma K-C, Lee SC, (2006) Handbook of physical-chemical properties and environmental fate for organic chemicals, 2nd ed vol IV, Nitrogen and sulfur compounds and pesticides. CRC Press Boca Raton FL, USA, pp 3639–3641

  • Parshetti GK, Telke AA, Kalyani DC, Govindwa SP (2010) Decolorization and detoxification of sulfonated azo dye methyl orange by Kocuria rosea MTCC 153. J Hazard Mater 176:503–509

    Article  CAS  Google Scholar 

  • Pino N, Peñuela G (2011) Simultaneous degradation of the pesticides methyl parathion and chlorpyrifos by an isolated bacterial consortium from a contaminated site. Int Biodeter Biodegr 65:827–831

    Article  CAS  Google Scholar 

  • Sahid IB, Carso J, Chuah TS (2011) Resistance mechanism of Leptochloa chinensis Nees, to propanil. Weed Biol Manag 11:57–63

    Article  CAS  Google Scholar 

  • Shen L, Xu H, Liu Y (2011) Microbial characterization of the biofilms developed for treating ampicillin-bearing wastewater. J Environ Sci Health A 46:314–322

    Article  CAS  Google Scholar 

  • Solyanikova IP, Baskunov BP, Baboshin MA, Saralov AI, Golovleva LA (2012) Detoxification of high concentrations of trinitrotoluene by bacteria. Appl Biochem Microbiol 48:21–27

    Article  CAS  Google Scholar 

  • Sørensen SR, Albers CN, Aamand J (2008) Rapid mineralization of the phenylurea herbicide diuron by Variovorax sp. strain SRS16 in pure culture and within a two-member consortium. Appl Environ Microbiol 74:2332–2340

    Article  Google Scholar 

  • Sun B, Ko K, Ramsay JA (2011) Biodegradation of 1,4-dioxane by a Flavobacterium. Biodegradation 22:651–659

    Article  CAS  Google Scholar 

  • Taylor EJ, Maund SJ, Bennet D, Pascoe D (1994) Effects of 3,4-dichloroaniline on the growth of two freshwater macroinvertebrates in a stream mesocosm. Ecotox Environ Safe 29(1):80–85

    Article  CAS  Google Scholar 

  • Tobiassen LS, Nielsen E, Nørhede P, Ladefoged O (2003) Report on the health effects of selected pesticide coformulants. Pesticides Research Nr. 80, Danish Veterinary and Food Administration, Institute of Food Safety and Nutrition, Danish Environmental Protection Agency

  • Vangnai AS, Petchkroh W (2007) Biodegradation of 4-chloroaniline by bacteria enriched from soil. FEMS Microbiol Lett 268:209–216

    Article  CAS  Google Scholar 

  • Vidal L, Christen P, Coello MN (2000) Feather degradation by Kocuria rosea in submerged culture. World J Microbiol Biotech 16:551–554

    Article  Google Scholar 

  • Wang C, Lu G-H, Zhou Y-J (2007) Biodegradablilty of chlorinated anilines in waters. Biomed Environ Sci 20:141–145

    CAS  Google Scholar 

  • Wang L, Wang G-L, Li S-P, Jiang J-D (2011) Luteibacter jiangsuensis sp. nov.: a methamidophos-degrading bacterium isolated from a methamidophos-manufacturing factory. Curr Microbiol 62:289–295

    Article  CAS  Google Scholar 

  • Water Analysis Handbook, 4th Edition (2002) Hach Company, Loveland, Co., USA, pp 221–224, 731–736, 743–749

  • Wendel C, Mason T (2009) Risks of propanil use to federally threatened California red-legged frog. Environmental fate and effects. Division office of pesticides program, Washington DC http://www.epa.gov/espp/litstatus/effects/redleg-frog/#propanil. Accessed 12 July 2012

  • Zhang LJ, Chen L, Thring RW (2011) Remediation of refinery oily sludge using isolated strain and biosurfactant.In: Proceedings of 2011 International symposium on water resource and environmental protection, Xi’an China, 20–22 may 2011, vol 3, pp 1649–1653

Download references

Acknowledgments

The authors wish to thank COFAA-IPN and SIP-IPN for financial support for fellowships to C. J-R, N. R-O, and J. G-M, and to Conacyt for graduate scholarships to V.E. H-G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nora Ruiz-Ordaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrera-González, V.E., Ruiz-Ordaz, N., Galíndez-Mayer, J. et al. Biodegradation of the herbicide propanil, and its 3,4-dichloroaniline by-product in a continuously operated biofilm reactor. World J Microbiol Biotechnol 29, 467–474 (2013). https://doi.org/10.1007/s11274-012-1200-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-012-1200-5

Keywords

Navigation