Skip to main content

Advertisement

Log in

Insights into the Endophytic Bacterial Microbiome of Crocus sativus: Functional Characterization Leads to Potential Agents that Enhance the Plant Growth, Productivity, and Key Metabolite Content

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The study was undertaken to unravel the culturable endophytic bacterial microbiome of Crocus sativus L. (saffron crocus) and consequently obtain potential leads to develop plant growth-promoting and biocontrol agents for increased productivity and sustainable cultivation. The endophytes formed 47 different operational taxonomic units (OTUs), spanning over 28 genera. The host was preferentially colonized by the genus Bacillus, followed by Burkholderia and Pantoea, respectively. Several endophytes possessed potential plant growth-promoting properties and inhibitory activities against the specific fungal pathogens of saffron. The endophytes, except for Microbacterium oxydans, did not cause any disease symptoms in the pot experiments. The selected cultures, Burkholderia gladioli, Streptomyces achromogenes, and three species of Bacillus, enhanced the host plant growth significantly. Based on the pot experiment results, two isolates, Bacillus mojavensis CS4EB32 and Burkholderia gladioli E39CS3, were selected for the field experiments. We obtained an increase of 67.5%, 69.8%, and 68.3% in the production of flowers with the individual and collective treatments, respectively. The treatments also enhanced the biomass of the plant and the length and weight of stigmas significantly. The endophyte treatments induced the expression of the pathway genes, resulting in a marked increase in the concentration of apocarotenoids. The study indicates that the dominant endophytes support plant growth and development in nature and present an opportunity for developing microbial formulations for the sustainability of saffron cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The pure cultures were deposited in the microbial repository of the institute (WDCM 1117). The 16S rRNA gene sequence data were submitted to the GenBank under the accession numbers MK472702–MK472705, MK474934–MK475031, MK377246, MK419120, MK583724, MK621297, and MK621285.

Code Availability

Not applicable.

References

  1. Kumar R, Singh V, Devi K, Sharma M, Singh MK, Ahuja PS (2008) State of art of saffron (Crocus sativus L.) agronomy: a comprehensive review. Food Rev Int 25:44–85. https://doi.org/10.1080/87559120802458503

    Article  Google Scholar 

  2. Ahrazem O, Rubio-Moraga A, Nebauer SG, Molina RV, Gomez-Gomez L (2015) Saffron: its phytochemistry, developmental processes, and biotechnological prospects. J Agric Food Chem 63:8751–8764. https://doi.org/10.1021/acs.jafc.5b03194

    Article  CAS  PubMed  Google Scholar 

  3. Mzabri I, Addi M, Berrichi A (2019) Traditional and modern uses of saffron (Crocus Sativus). Cosmetics 6:63. https://doi.org/10.3390/cosmetics6040063

    Article  CAS  Google Scholar 

  4. Bukhari SI, Manzoor M, Dhar MK (2018) A comprehensive review of the pharmacological potential of Crocus sativus and its bioactive apocarotenoids. Biomed Pharmacother 98:733–745. https://doi.org/10.1016/j.biopha.2017.12.090

    Article  CAS  PubMed  Google Scholar 

  5. Gresta F, Lombardo GM, Siracusa L, Ruberto G (2008) Saffron, an alternative crop for sustainable agricultural systems. A review Agron Sustain Dev 28:95–112. https://doi.org/10.1051/agro:2007030

    Article  CAS  Google Scholar 

  6. Menia M, Iqbal S, Zahida R, Tahir S, Kanth RH, Saad AA, Hussian A (2018) Production technology of saffron for enhancing productivity. J Pharmacognos Phytochem 7:1033–1039

    Google Scholar 

  7. Palmero D, Rubio-Moraga A, Galvez-Patón L, Nogueras J, Abato C, Gómez-Gómez L, Ahrazem O (2014) Pathogenicity and genetic diversity of Fusarium oxysporum isolates from corms of Crocus sativus. Ind Crops Prod 61:186–192. https://doi.org/10.1016/j.indcrop.2014.06.051

    Article  CAS  Google Scholar 

  8. Wani ZA, Mirza DN, Arora P, Riyaz-Ul-Hassan S (2016) Molecular phylogeny, diversity, community structure, and plant growth promoting properties of fungal endophytes associated with the corms of saffron plant: an insight into the microbiome of Crocus sativus Linn. Fungal Biol 120:1509–1524. https://doi.org/10.1016/j.funbio.2016.07.011

    Article  PubMed  Google Scholar 

  9. Cappelli C (1994) Occurrence of Fusarium oxysporum f. sp. gladioli on saffron in Italy. Phytopathol Mediterr 33:93–94. https://doi.org/10.1023/A:1021204022787

    Article  Google Scholar 

  10. Compant S, Cambon MC, Vacher C, Mitter B, Samad A, Sessitsch A (2020) The plant endosphere world–bacterial life within plants. Environ Microbiol. https://doi.org/10.1111/1462-2920.15240

    Article  PubMed  Google Scholar 

  11. Santoyo G, Moreno-Hagelsieb G, del Carmen O-M, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99. https://doi.org/10.1016/j.micres.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  12. Hardoim PR, Van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320. https://doi.org/10.1128/MMBR.00050-14

    Article  PubMed  PubMed Central  Google Scholar 

  13. Afzal I, Shinwari ZK, Sikandar S, Shahzad S (2019) Plant beneficial endophytic bacteria: mechanisms, diversity, host range and genetic determinants. Microbiol Res 221:6–49. https://doi.org/10.1016/j.micres.2019.02.001

    Article  CAS  Google Scholar 

  14. Liu H, Carvalhais LC, Crawford M, Singh E, Dennis PG, Pieterse CM, Schenk PM (2017) Inner plant values: diversity, colonization and benefits from endophytic bacteria. Front Microbiol 8:2552. https://doi.org/10.3389/fmicb.2017.02552

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ali S, Charles TC, Glick BR (2014) Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem 80:160–167. https://doi.org/10.1016/j.plaphy.2014.04.003

    Article  CAS  PubMed  Google Scholar 

  16. Card S, Johnson L, Teasdale S, Caradus J (2016) Deciphering endophyte behaviour: the link between endophyte biology and efficacious biological control agents. FEMS Microbiol Ecol 92:8. https://doi.org/10.1093/femsec/fiw114

    Article  CAS  Google Scholar 

  17. Harman GE, Uphoff N (2019) Symbiotic root-endophytic soil microbes improve crop productivity and provide environmental benefits. Scientifica 2019. https://doi.org/10.1155/2019/9106395

  18. Wani ZA, Kumar A, Sultan P, Bindu K, Riyaz-Ul-Hassan S, Ashraf N (2017) Mortierella alpina CS10E4, an oleaginous fungal endophyte of Crocus sativus L. enhances apocarotenoid biosynthesis and stress tolerance in the host plant. Sci Rep 7:1–11. https://doi.org/10.1038/s41598-017-08974-z

    Article  CAS  Google Scholar 

  19. Arora P, Wani ZA, Ahmad T, Sultan P, Gupta S, Riyaz-Ul-Hassan S (2019) Community structure, spatial distribution, diversity and functional characterization of culturable endophytic fungi associated with Glycyrrhiza glabra L. Fungal Biol 123:373–383. https://doi.org/10.1016/j.funbio.2019.02.003

    Article  PubMed  Google Scholar 

  20. Turner S, Pryer KM, Miao VP, Palmer JD (1999) Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis 1. J Eukaryot Microbiol 46:327–338. https://doi.org/10.1111/j.1550-7408.1999.tb04612.x

    Article  CAS  PubMed  Google Scholar 

  21. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  22. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qadri M, Rajput R, Abdin MZ, Vishwakarma RA, Riyaz-Ul-Hassan S (2014) Diversity, molecular phylogeny, and bioactive potential of fungal endophytes associated with the Himalayan blue pine (Pinus wallichiana). Microb Ecol 67:877–887. https://doi.org/10.1007/s00248-014-0379-4

    Article  PubMed  Google Scholar 

  24. Hammer O, Harper DA, Ryan PD (2001) Palaeontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  25. Kumar G, Kanaujia N, Bafana A (2012) Functional and phylogenetic diversity of root-associated bacteria of Ajuga bracteosa in Kangra valley. Microbiol Res 167:220–225. https://doi.org/10.1016/j.micres.2011.09.001

    Article  PubMed  Google Scholar 

  26. Sierra G (1957) A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. Antonie Van Leeuwenhoek 23:15–22. https://doi.org/10.1007/BF02545855

    Article  CAS  PubMed  Google Scholar 

  27. Gordon SA, Weber RP (1951) Colorimetric estimation of indoleacetic acid. Plant Physiol 26:192. https://doi.org/10.1104/pp.26.1.192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15. https://doi.org/10.1034/j.1399-3054.2003.00086.x

    Article  CAS  PubMed  Google Scholar 

  29. Jensen HL (1942) Nitrogen fixation in leguminous plants. II. Is symbiotic nitrogen fixation influenced by Azotobacter. Proc Linn Soc NSW 67:205–212

    CAS  Google Scholar 

  30. Cappuccino JG, Sherman N (1996) Instructor’s guide for microbiology: a laboratory manual, 10th Edition, Pearson, UK

  31. Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17:362–370

    CAS  Google Scholar 

  32. Andrews MY, Santelli CM, Duckworth OW (2016) Digital image quantification of siderophores on agar plates. Data in Brief 6:890–898. https://doi.org/10.1016/j.dib.2016.01.054

    Article  PubMed  PubMed Central  Google Scholar 

  33. Murthy N, Bleakley B (2012) Simplified method of preparing colloidal chitin used for screening of chitinase-producing microorganisms. Internet J Microbiol 10:2

    Google Scholar 

  34. Lorck H (1948) Production of hydrocyanic acid by bacteria. Physiol Plant 1:142–146

    Article  CAS  Google Scholar 

  35. Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteau reagent. Method Enzymol 299:152–178. https://doi.org/10.1016/S0076-6879(99)99017-1

    Article  CAS  Google Scholar 

  36. Akkol EK, Goger F, Kosar M, Başer KH (2008) Phenolic composition and biological activities of Salvia halophile and Salvia virgate from Turkey. Food Chem 108(3):942–949. https://doi.org/10.1016/j.foodchem.2007.11.071

    Article  CAS  PubMed  Google Scholar 

  37. Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394. https://doi.org/10.1016/S0005-2728(89)80347-0

    Article  CAS  Google Scholar 

  38. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  39. Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678. https://doi.org/10.1016/j.soilbio.2009.11.024

    Article  CAS  Google Scholar 

  40. Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100:1738–1750. https://doi.org/10.3732/ajb.1200572

    Article  PubMed  Google Scholar 

  41. Chimwamurombe PM, Grönemeyer JL, Reinhold-Hurek B (2016) Isolation and characterization of culturable seed-associated bacterial endophytes from gnotobiotically grown Marama bean seedlings. FEMS Microbiol Ecol 92, fiw083. https://doi.org/10.1093/femsec/fiw083

  42. Sharma T, Kaul S, Dhar MK (2015) Diversity of culturable bacterial endophytes of saffron in Kashmir. India SpringerPlus 4:661. https://doi.org/10.1186/s40064-015-1435-3

    Article  CAS  PubMed  Google Scholar 

  43. Shade A, Handelsman J (2012) Beyond the Venn diagram: the hunt for a core microbiome. Environ Microbiol 14:4–12. https://doi.org/10.1111/j.1462-2920.2011.02585.x

    Article  CAS  PubMed  Google Scholar 

  44. Brader G, Compant S, Vescio K, Mitter B, Trognitz F, Ma LJ, Sessitsch A (2017) Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic endophytes. Annu Rev Phytopathol 55:61–83. https://doi.org/10.1146/annurev-phyto-080516-035641

    Article  CAS  PubMed  Google Scholar 

  45. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012. https://doi.org/10.6064/2012/963401

  46. Hilbert M, Voll LM, Ding Y, Hofmann J, Sharma M, Zuccaro A (2012) Indole derivative production by the root endophyte Piriformospora indica is not required for growth promotion but for biotrophic colonization of barley roots. New Phytol 196:520–534. https://doi.org/10.1111/j.1469-8137.2012.04275.x

    Article  CAS  PubMed  Google Scholar 

  47. Zúñiga A, Poupin MJ, Donoso R, Ledger T, Guiliani N, Gutiérrez RA, González B (2013) Quorum sensing and indole-3-acetic acid degradation play a role in colonization and plant growth promotion of Arabidopsis thaliana by Burkholderia phytofirmans PsJN Mol Plant Microbe Interact 26:546–553. https://doi.org/10.1094/MPMI-10-12-0241-R

  48. Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39. https://doi.org/10.1016/j.micres.2013.09.009

    Article  CAS  PubMed  Google Scholar 

  49. Dariush S, Emtiazi G (2010) Ammonium production during the nitrogen-fixing process by wild Paenibacillus strains and cell-free extract adsorbed on nano TiO2 particles. J Microbiol Biotechn 20:1251–1258. https://doi.org/10.4014/jmb.1003.03002

  50. Castagno LN, Estrella MJ, Sannazzaro AI, Grassano AE, Ruiz OA (2011) Phosphate-solubilization mechanism and in vitro plant growth promotion activity mediated by Pantoea eucalypti isolated from Lotus tenuis rhizosphere in the Salado River Basin (Argentina). J Appl Microbiol 110:1151–1165. https://doi.org/10.1111/j.1365-2672.2011.04968.x

    Article  CAS  PubMed  Google Scholar 

  51. Loaces I, Ferrando L, Scavino AF (2011) Dynamics, diversity and function of endophytic siderophore-producing bacteria in rice. Microb Ecol 61:606–618. https://doi.org/10.1007/s00248-010-9780-9

    Article  PubMed  Google Scholar 

  52. Zhang T, Huang C, Deng C, Zhang Y, Feng Y, Hu J, Wang R, Zhao L, Wang Y, Kai G (2020) First report of corm rot on saffron caused by Penicillium solitum in China. Plant Dis 104:579–579. https://doi.org/10.1094/PDIS-09-19-1927-PDN

    Article  Google Scholar 

  53. Mousa WK, Shearer C, Limay-Rios V, Ettinger CL, Eisen JA, Raizada MN (2016) Root-hair endophyte stacking in finger millet creates a physicochemical barrier to trap the fungal pathogen Fusarium graminearum. Nat Microbiol 1:1–12. https://doi.org/10.1038/nmicrobiol.2016.167

    Article  CAS  Google Scholar 

  54. Swain DM, Yadav SK, Tyagi I, Kumar R, Kumar R, Ghosh S, Das J, Jha G (2017) A prophage tail-like protein is deployed by Burkholderia bacteria to feed on fungi. Nat Commun 8:1–9. https://doi.org/10.1038/s41467-017-00529-0

    Article  CAS  Google Scholar 

  55. Conrath U, Beckers GJ, Langenbach CJ, Jaskiewicz MR (2015) Priming for enhanced defense. Annu Rev Phytopathol 53:97–119. https://doi.org/10.1146/annurev-phyto-080614-120132

    Article  CAS  PubMed  Google Scholar 

  56. Shimosaka M, Fukumori Y, Narita T, Zhang XY, Kodaira R, Nogawa M, Okazaki M (2001) The bacterium Burkholderia gladioli strain CHB101 produces two different kinds of chitinases belonging to families 18 and 19 of the glycosyl hydrolases. J Biosci Bioeng 91:103–105. https://doi.org/10.1016/S1389-1723(01)80123-7

    Article  CAS  PubMed  Google Scholar 

  57. Singh BK, Trivedi P, Egidi E, Macdonald CA, Delgado-Baquerizo M (2020) Crop microbiome and sustainable agriculture. Nat Rev Microbiol 18:601–602. https://doi.org/10.1038/s41579-020-00446-y

    Article  CAS  PubMed  Google Scholar 

  58. Shahidi F, Ambigaipalan P (2015) Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects—a review. J Funct Foods 18:820–897. https://doi.org/10.1016/j.jff.2015.06.018

    Article  CAS  Google Scholar 

  59. Pandey SS, Singh S, Pandey H, Srivastava M, Ray T, Soni S, Pandey A, Shanker K, Babu CV, Banerjee S, Gupta MM (2018) Endophytes of Withania somnifera modulate in planta content and the site of withanolide biosynthesis. Sci Rep 8:1–19

    Google Scholar 

  60. Ray T, Pandey SS, Pandey A, Srivastava M, Shanker K, Kalra A (2019) Endophytic consortium with diverse gene-regulating capabilities of benzylisoquinoline alkaloids biosynthetic pathway can enhance endogenous morphine biosynthesis in Papaver somniferum. Front Microbiol 10:925. https://doi.org/10.3389/fmicb.2019.00925

    Article  PubMed  PubMed Central  Google Scholar 

  61. Shehata HR, Raizada MN (2017) A Burkholderia endophyte of the ancient maize landrace Chapalote utilizes c-di-GMP-dependent and independent signaling to suppress diverse plant fungal pathogen targets. FEMS Microbiol Lett 364:138. https://doi.org/10.1093/femsle/fnx138

    Article  CAS  Google Scholar 

  62. Fiori M, Ligios V, Schiaffino A (2011) Identification and characterization of Burkholderia isolates obtained from bacterial rot of saffron (Crocus sativus L.) grown in Italy. Phytopathol Mediterr 50:450–461. https://www.jstor.org/stable/26556466

  63. Eberl L, Vandamme P (2016) Members of the genus Burkholderia: good and bad guys. F1000Research 5. https://doi.org/10.12688/f1000research.8221.1

  64. Mannaa M, Park I, Seo YS (2019) Genomic features and insights into the taxonomy, virulence, and benevolence of plant-associated Burkholderia species. Int J Mol Sci 20:121. https://doi.org/10.3390/ijms20010121

    Article  CAS  Google Scholar 

  65. Ahmad T, Bashir A, Farooq S, Riyaz-Ul-Hassan S (2021) Burkholderia gladioli E39CS3, an endophyte of Crocus sativus Linn., induces host resistance against corm-rot caused by Fusarium oxysporum. J Appl Microbiol. https://doi.org/10.1111/jam.15190

Download references

Acknowledgements

TA is grateful to the University Grant Commission, New Delhi, India, for the Senior Research Fellowship. SF is supported by the Department of Science and Technology, New Delhi, India, through INSPIRE Senior Research Fellow. The article was approved by the institutional IPR committee as Manuscript no. CSIR-IIIM/IPR/00270.

Funding

This work was supported by the Council of Scientific and Industrial Research (CSIR), New Delhi, India, through the Major Lab Projects (MLP1002 and MLP1008) of the institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Riyaz-Ul-Hassan.

Ethics declarations

Ethics Approval

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6327 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, T., Farooq, S., Mirza, D.N. et al. Insights into the Endophytic Bacterial Microbiome of Crocus sativus: Functional Characterization Leads to Potential Agents that Enhance the Plant Growth, Productivity, and Key Metabolite Content. Microb Ecol 83, 669–688 (2022). https://doi.org/10.1007/s00248-021-01810-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-021-01810-y

Keywords

Navigation