Skip to main content

Advertisement

Log in

Recent advances in the identification and management of inherited hyperoxalurias

  • Invited Review
  • Published:
Urolithiasis Aims and scope Submit manuscript

A Correction to this article was published on 13 October 2019

This article has been updated

Abstract

Primary hyperoxaluria (PH) is caused by genetic mutations resulting in oxalate overproduction leading to nephrolithiasis, nephrocalcinosis, extrarenal manifestations, chronic kidney disease, and end-stage renal disease. Advances in genetic testing techniques have improved our ability to efficiently and effectively obtain a definitive diagnosis of PH as well as easily screen at-risk family members. Similarly, advances in technologies related to intervening at the genetic and molecular level promise to change the way we treat patients with PH. In this review, we provide an update regarding the identification of underlying molecular and biochemical causes of inherited hyperoxalurias, clinical manifestations, and treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

  • 13 October 2019

    The original version of this article unfortunately contained a mistake. On page 84, the dose for oral potassium citrate is incorrectly written as “0.1 mg/kg/day divided BID-QID for children, 30–60 mg per day divided BID-QID for adults”.

  • 13 October 2019

    The original version of this article unfortunately contained a mistake. On page 84, the dose for oral potassium citrate is incorrectly written as ���0.1��mg/kg/day divided BID-QID for children, 30���60��mg per day divided BID-QID for adults���.

References

  1. CJ D (2001) Primary hyperoxaluria. In: Scriver CRBA, Sly WS, Valle D, Childs B, Kinzler KW, Vogelstein B (ed) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 3323–3367

    Google Scholar 

  2. Archer HE, Dormer AE, Scowen EF, Watts RW (1957) Primary hyperoxaluria. Lancet 273(6990):320–322

    Article  CAS  Google Scholar 

  3. Purdue PE, Takada Y, Danpure CJ (1990) Identification of mutations associated with peroxisome-to-mitochondrion mistargeting of alanine/glyoxylate aminotransferase in primary hyperoxaluria type 1. J Cell Biol 111(6 Pt 1):2341–2351

    Article  CAS  Google Scholar 

  4. Li X, Knight J, Fargue S, Buchalski B, Guan Z, Inscho EW, Liebow A, Fitzgerald K, Querbes W, Todd Lowther W, Holmes RP (2016) Metabolism of (13)C5-hydroxyproline in mouse models of primary hyperoxaluria and its inhibition by RNAi therapeutics targeting liver glycolate oxidase and hydroxyproline dehydrogenase. Biochim Biophys Acta 1862(2):233–239. https://doi.org/10.1016/j.bbadis.2015.12.001

    Article  PubMed  CAS  Google Scholar 

  5. Cramer SD, Ferree PM, Lin K, Milliner DS, Holmes RP (1999) The gene encoding hydroxypyruvate reductase (GRHPR) is mutated in patients with primary hyperoxaluria type II. Hum Mol Genet 8(11):2063–2069

    Article  CAS  Google Scholar 

  6. Williams HE, Smith LH Jr (1968) L-glyceric aciduria. A new genetic variant of primary hyperoxaluria. N Engl J Med 278(5):233–238. https://doi.org/10.1056/NEJM196802012780502

    Article  PubMed  CAS  Google Scholar 

  7. Hopp K, Cogal AG, Bergstralh EJ, Seide BM, Olson JB, Meek AM, Lieske JC, Milliner DS, Harris PC, Rare Kidney Stone C (2015) Phenotype-genotype correlations and estimated carrier frequencies of primary hyperoxaluria. J Am Soc Nephrol 26(10):2559–2570. https://doi.org/10.1681/ASN.2014070698

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Bhat S, Williams EL, Rumsby G (2005) Tissue differences in the expression of mutations and polymorphisms in the GRHPR gene and implications for diagnosis of primary hyperoxaluria type 2. Clin Chem 51(12):2423–2425. https://doi.org/10.1373/clinchem.2005.058305

    Article  PubMed  CAS  Google Scholar 

  9. Dhondup T, Lorenz EC, Milliner DS, Lieske JC (2018) Combined liver-kidney transplantation for primary hyperoxaluria type 2: a case report. Am J Transpl 18(1):253–257. https://doi.org/10.1111/ajt.14418

    Article  CAS  Google Scholar 

  10. Belostotsky R, Seboun E, Idelson GH, Milliner DS, Becker-Cohen R, Rinat C, Monico CG, Feinstein S, Ben-Shalom E, Magen D, Weissman I, Charon C, Frishberg Y (2010) Mutations in DHDPSL are responsible for primary hyperoxaluria type III. Am J Hum Genet 87(3):392–399. https://doi.org/10.1016/j.ajhg.2010.07.023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Monico CG, Rossetti S, Belostotsky R, Cogal AG, Herges RM, Seide BM, Olson JB, Bergstrahl EJ, Williams HJ, Haley WE, Frishberg Y, Milliner DS (2011) Primary hyperoxaluria type III gene HOGA1 (formerly DHDPSL) as a possible risk factor for idiopathic calcium oxalate urolithiasis. Clin J Am Soc Nephrol 6(9):2289–2295. https://doi.org/10.2215/CJN.02760311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Williams EL, Bockenhauer D, van’t Hoff WG, Johri N, Laing C, Sinha MD, Unwin R, Viljoen A, Rumsby G (2012) The enzyme 4-hydroxy-2-oxoglutarate aldolase is deficient in primary hyperoxaluria type 3. Nephrol Dial Transpl 27(8):3191–3195. https://doi.org/10.1093/ndt/gfs039

    Article  CAS  Google Scholar 

  13. Whittamore JM, Hatch M (2017) The role of intestinal oxalate transport in hyperoxaluria and the formation of kidney stones in animals and man. Urolithiasis 45(1):89–108. https://doi.org/10.1007/s00240-016-0952-z

    Article  PubMed  CAS  Google Scholar 

  14. Cochat P, Deloraine A, Rotily M, Olive F, Liponski I, Deries N (1995) Epidemiology of primary hyperoxaluria type 1. Societe de nephrologie and the societe de nephrologie pediatrique. Nephrol Dial Transpl 10 Suppl 8:3–7

    Article  Google Scholar 

  15. van Woerden CS, Groothoff JW, Wanders RJ, Davin JC, Wijburg FA (2003) Primary hyperoxaluria type 1 in The Netherlands: prevalence and outcome. Nephrol Dial Transpl 18(2):273–279

    Article  Google Scholar 

  16. Al-Eisa AA, Samhan M, Naseef M (2004) End-stage renal disease in Kuwaiti children: an 8-year experience. Transpl Proc 36(6):1788–1791. https://doi.org/10.1016/j.transproceed.2004.07.024

    Article  CAS  Google Scholar 

  17. Cochat P, Liutkus A, Fargue S, Basmaison O, Ranchin B, Rolland MO (2006) Primary hyperoxaluria type 1: still challenging! Pediatr Nephrol 21(8):1075–1081. https://doi.org/10.1007/s00467-006-0124-4

    Article  PubMed  Google Scholar 

  18. Kamoun A, Lakhoua R (1996) End-stage renal disease of the Tunisian child: epidemiology, etiologies, and outcome. Pediatr Nephrol 10(4):479–482

    Article  CAS  Google Scholar 

  19. Madani K, Otoukesh H, Rastegar A, Van Why S (2001) Chronic renal failure in Iranian children. Pediatr Nephrol 16(2):140–144

    Article  CAS  Google Scholar 

  20. Rinat C, Wanders RJ, Drukker A, Halle D, Frishberg Y (1999) Primary hyperoxaluria type I: a model for multiple mutations in a monogenic disease within a distinct ethnic group. J Am Soc Nephrol 10(11):2352–2358

    PubMed  CAS  Google Scholar 

  21. Edvardsson VO, Goldfarb DS, Lieske JC, Beara-Lasic L, Anglani F, Milliner DS, Palsson R (2013) Hereditary causes of kidney stones and chronic kidney disease. Pediatric Nephrol 28(10):1923–1942. https://doi.org/10.1007/s00467-012-2329-z

    Article  Google Scholar 

  22. Edvardsson VO, Goldfarb DS, Lieske JC, Beara-Lasic L, Anglani F, Milliner DS, Palsson R (2013) Hereditary causes of kidney stones and chronic kidney disease. Pediatr Nephrol 28(10):1923–1942. https://doi.org/10.1007/s00467-012-2329-z

    Article  PubMed  PubMed Central  Google Scholar 

  23. Clifford-Mobley O, Hewitt L, Rumsby G (2016) Simultaneous analysis of urinary metabolites for preliminary identification of primary hyperoxaluria. Ann Clin Biochem 53(Pt 4):485–494. https://doi.org/10.1177/0004563215606158

    Article  PubMed  CAS  Google Scholar 

  24. Halbritter J, Baum M, Hynes AM, Rice SJ, Thwaites DT, Gucev ZS, Fisher B, Spaneas L, Porath JD, Braun DA, Wassner AJ, Nelson CP, Tasic V, Sayer JA, Hildebrandt F (2015) Fourteen monogenic genes account for 15% of nephrolithiasis/nephrocalcinosis. J Am Soc Nephrol 26(3):543–551. https://doi.org/10.1681/ASN.2014040388

    Article  PubMed  CAS  Google Scholar 

  25. Daga A, Majmundar AJ, Braun DA, Gee HY, Lawson JA, Shril S, Jobst-Schwan T, Vivante A, Schapiro D, Tan W, Warejko JK, Widmeier E, Nelson CP, Fathy HM, Gucev Z, Soliman NA, Hashmi S, Halbritter J, Halty M, Kari JA, El-Desoky S, Ferguson MA, Somers MJG, Traum AZ, Stein DR, Daouk GH, Rodig NM, Katz A, Hanna C, Schwaderer AL, Sayer JA, Wassner AJ, Mane S, Lifton RP, Milosevic D, Tasic V, Baum MA, Hildebrandt F (2018) Whole exome sequencing frequently detects a monogenic cause in early onset nephrolithiasis and nephrocalcinosis. Kidney Int 93(1):204–213. https://doi.org/10.1016/j.kint.2017.06.025

    Article  PubMed  CAS  Google Scholar 

  26. Sayer JA (2017) Progress in understanding the genetics of calcium-containing nephrolithiasis. J Am Soc Nephrol 28(3):748–759. https://doi.org/10.1681/ASN.2016050576

    Article  PubMed  CAS  Google Scholar 

  27. Frishberg Y, Rinat C, Shalata A, Khatib I, Feinstein S, Becker-Cohen R, Weismann I, Wanders RJ, Rumsby G, Roels F, Mandel H (2005) Intra-familial clinical heterogeneity: absence of genotype-phenotype correlation in primary hyperoxaluria type 1 in Israel. Am J Nephrol 25(3):269–275. https://doi.org/10.1159/000086357

    Article  PubMed  Google Scholar 

  28. Tang X, Bergstralh EJ, Mehta RA, Vrtiska TJ, Milliner DS, Lieske JC (2015) Nephrocalcinosis is a risk factor for kidney failure in primary hyperoxaluria. Kidney Int 87(3):623–631. https://doi.org/10.1038/ki.2014.298

    Article  PubMed  CAS  Google Scholar 

  29. Worcester EM, Evan AP, Coe FL, Lingeman JE, Krambeck A, Sommers A, Phillips CL, Milliner D (2013) A test of the hypothesis that oxalate secretion produces proximal tubule crystallization in primary hyperoxaluria type I. Am J Physiol Renal Physiol 305(11):F1574–F1584. https://doi.org/10.1152/ajprenal.00382.2013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Harambat J, Fargue S, Acquaviva C, Gagnadoux MF, Janssen F, Liutkus A, Mourani C, Macher MA, Abramowicz D, Legendre C, Durrbach A, Tsimaratos M, Nivet H, Girardin E, Schott AM, Rolland MO, Cochat P (2010) Genotype-phenotype correlation in primary hyperoxaluria type 1: the p.Gly170Arg AGXT mutation is associated with a better outcome. Kidney Int 77(5):443–449. https://doi.org/10.1038/ki.2009.435

    Article  PubMed  CAS  Google Scholar 

  31. Mookadam F, Smith T, Jiamsripong P, Moustafa SE, Monico CG, Lieske JC, Milliner DS (2010) Cardiac abnormalities in primary hyperoxaluria. Circ J 74(11):2403–2409

    Article  Google Scholar 

  32. Bacchetta J, Boivin G, Cochat P (2016) Bone impairment in primary hyperoxaluria: a review. Pediatr Nephrol 31(1):1–6. https://doi.org/10.1007/s00467-015-3048-z

    Article  PubMed  Google Scholar 

  33. Derveaux T, Delbeke P, Walraedt S, Raes A, Van Laecke S, Leroy BP, De Zaeytijd J (2016) Detailed Clinical phenotyping of oxalate maculopathy in primary hyperoxaluria type 1 and review of the literature. Retina 36(11):2227–2235. https://doi.org/10.1097/IAE.0000000000001058

    Article  PubMed  CAS  Google Scholar 

  34. Shreberk-Hassidim R, Zaguri R, Maly A, Zlotogorski A, Ramot Y (2015) Skin manifestations of primary hyperoxaluria: a case report. Int J Dermatol 54(11):e478–e479. https://doi.org/10.1111/ijd.13036

    Article  PubMed  Google Scholar 

  35. Ardemani G, Govaert P, Oussoren E, Dorresteijn E, Wildschut E, Lequin M, Dudink J (2017) Crystal clear cerebral ultrasound images mimicking acute asphyxia in an infant with primary hyperoxaluria. Eur J Paediatr Neurol 21(5):792–794. https://doi.org/10.1016/j.ejpn.2017.06.003

    Article  PubMed  Google Scholar 

  36. Berini SE, Tracy JA, Engelstad JK, Lorenz EC, Milliner DS, Dyck PJ (2015) Progressive polyradiculoneuropathy due to intraneural oxalate deposition in type 1 primary hyperoxaluria. Muscle Nerve 51(3):449–454. https://doi.org/10.1002/mus.24495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Moorhead PJ, Cooper DJ, Timperley WR (1975) Progressive peripheral neuropathy in patient with primary hyperoxaluria. Br Med J 2(5966):312–313

    Article  CAS  Google Scholar 

  38. Milliner DS, Harris PC, Cogal AG, Lieske JC (1993) Primary hyperoxaluria type 1. In: Adam MP, Ardinger HH, Pagon RA et al (eds) Gene reviews®, Seattle, WA

  39. Hallson PC, Rose GA, Sulaiman S (1983) Raising urinary citrate lowers calcium oxalate and calcium phosphate crystal formation in whole urine. Urol Int 38(3):179–181. https://doi.org/10.1159/000280885

    Article  PubMed  CAS  Google Scholar 

  40. Milliner DS, Eickholt JT, Bergstralh EJ, Wilson DM, Smith LH (1994) Results of long-term treatment with orthophosphate and pyridoxine in patients with primary hyperoxaluria. N Engl J Med 331(23):1553–1558. https://doi.org/10.1056/NEJM199412083312304

    Article  PubMed  CAS  Google Scholar 

  41. Monico CG, Rossetti S, Olson JB, Milliner DS (2005) Pyridoxine effect in type I primary hyperoxaluria is associated with the most common mutant allele. Kidney Int 67(5):1704–1709. https://doi.org/10.1111/j.1523-1755.2005.00267.x

    Article  PubMed  CAS  Google Scholar 

  42. Fargue S, Rumsby G, Danpure CJ (2013) Multiple mechanisms of action of pyridoxine in primary hyperoxaluria type 1. Biochim Biophys Acta 1832(10):1776–1783. https://doi.org/10.1016/j.bbadis.2013.04.010

    Article  PubMed  CAS  Google Scholar 

  43. Hoyer-Kuhn H, Kohbrok S, Volland R, Franklin J, Hero B, Beck BB, Hoppe B (2014) Vitamin B6 in primary hyperoxaluria I: first prospective trial after 40 years of practice. Clin J Am Soc Nephrol 9(3):468–477. https://doi.org/10.2215/CJN.06820613

    Article  PubMed  PubMed Central  Google Scholar 

  44. Carrasco A Jr, Granberg CF, Gettman MT, Milliner DS, Krambeck AE (2015) Surgical management of stone disease in patients with primary hyperoxaluria. Urology 85(3):522–526. https://doi.org/10.1016/j.urology.2014.11.018

    Article  PubMed  PubMed Central  Google Scholar 

  45. Al-Abadi E, Hulton SA (2013) Extracorporal shock wave lithotripsy in the management of stones in children with oxalosis–still the first choice? Pediatr Nephrol 28(7):1085–1089. https://doi.org/10.1007/s00467-013-2424-9

    Article  PubMed  Google Scholar 

  46. Daudon M, Estepa L, Lacour B, Jungers P (1998) Unusual morphology of calcium oxalate calculi in primary hyperoxaluria. J Nephrol 11(Suppl 1):51–55

    PubMed  Google Scholar 

  47. Kerbl K, Clayman RV (2000) Endourologic treatment of nephrocalcinosis. Urology 56(3):508

    Article  CAS  Google Scholar 

  48. Hoppe B, Kemper MJ, Bokenkamp A, Langman CB (1998) Plasma calcium-oxalate saturation in children with renal insufficiency and in children with primary hyperoxaluria. Kidney Int 54(3):921–925. https://doi.org/10.1046/j.1523-1755.1998.00066.x

    Article  PubMed  CAS  Google Scholar 

  49. Marangella M, Cosseddu D, Petrarulo M, Vitale C, Linari F (1993) Thresholds of serum calcium oxalate supersaturation in relation to renal function in patients with or without primary hyperoxaluria. Nephrol Dial Transpl 8(12):1333–1337

    CAS  Google Scholar 

  50. Cochat P, Hulton SA, Acquaviva C, Danpure CJ, Daudon M, De Marchi M, Fargue S, Groothoff J, Harambat J, Hoppe B, Jamieson NV, Kemper MJ, Mandrile G, Marangella M, Picca S, Rumsby G, Salido E, Straub M, van Woerden CS, OxalEurope (2012) primary hyperoxaluria type 1: indications for screening and guidance for diagnosis and treatment. Nephrol Dial Transpl 27 (5):1729–1736. https://doi.org/10.1093/ndt/gfs078

    Article  CAS  Google Scholar 

  51. Watts RW, Calne RY, Rolles K, Danpure CJ, Morgan SH, Mansell MA, Williams R, Purkiss P (1987) Successful treatment of primary hyperoxaluria type I by combined hepatic and renal transplantation. Lancet 2(8557):474–475

    Article  CAS  Google Scholar 

  52. Lorenz EC, Lieske JC, Seide BM, Meek AM, Olson JB, Bergstralh EJ, Milliner DS (2014) Sustained pyridoxine response in primary hyperoxaluria type 1 recipients of kidney alone transplant. Am J Transpl 14(6):1433–1438. https://doi.org/10.1111/ajt.12706

    Article  CAS  Google Scholar 

  53. Husing A, Schmidt M, Beckebaum S, Cicinnati VR, Koch R, Tholking G, Stella J, Heinzow H, Schmidt HH, Kabar I (2015) Long-term renal function in liver transplant recipients after conversion from calcineurin inhibitors to mTOR Inhibitors. Ann Transpl 20:707–713

    Article  Google Scholar 

  54. Bobbin ML, Rossi JJ (2016) RNA Interference (RNAi)-based therapeutics: Delivering on the promise? Annu Rev Pharmacol Toxicol 56:103–122. https://doi.org/10.1146/annurev-pharmtox-010715-103633

    Article  PubMed  CAS  Google Scholar 

  55. Dutta C, Avitahl-Curtis N, Pursell N, Larsson Cohen M, Holmes B, Diwanji R, Zhou W, Apponi L, Koser M, Ying B, Chen D, Shui X, Saxena U, Cyr WA, Shah A, Nazef N, Wang W, Abrams M, Dudek H, Salido E, Brown BD, Lai C (2016) Inhibition of glycolate oxidase with dicer-substrate siRNA reduces calcium oxalate deposition in a mouse model of primary hyperoxaluria Type 1. Mol Ther 24(4):770–778. https://doi.org/10.1038/mt.2016.4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Martin-Higueras C, Luis-Lima S, Salido E (2016) Glycolate oxidase is a safe and efficient target for substrate reduction therapy in a mouse model of primary hyperoxaluria type I. Mol Ther 24(4):719–725. https://doi.org/10.1038/mt.2015.224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Liebow A, Li X, Racie T, Hettinger J, Bettencourt BR, Najafian N, Haslett P, Fitzgerald K, Holmes RP, Erbe D, Querbes W, Knight J (2017) An investigational rnai therapeutic targeting glycolate oxidase reduces oxalate production in models of primary hyperoxaluria. J Am Soc Nephrol 28(2):494–503. https://doi.org/10.1681/ASN.2016030338

    Article  PubMed  CAS  Google Scholar 

  58. Frishberg Y, Zeharia A, Lyakhovetsky R, Bargal R, Belostotsky R (2014) Mutations in HAO1 encoding glycolate oxidase cause isolated glycolic aciduria. J Med Genet 51(8):526–529. https://doi.org/10.1136/jmedgenet-2014-102529

    Article  PubMed  CAS  Google Scholar 

  59. Hulton SA, F Y, Milliner DS, Hoppe B, Lorch U, Olgesbee D, Lieske JC, Haslett PA (2016) A Phase 1/2 trial of ALN-GO1, an investigational RNAi therapeutic for primary hyperoxaluria type 1 (PH1). Pediatr Nephrol 31:1763–1763

    Google Scholar 

  60. Mdluli K, Booth MP, Brady RL, Rumsby G (2005) A preliminary account of the properties of recombinant human glyoxylate reductase (GRHPR), LDHA and LDHB with glyoxylate, and their potential roles in its metabolism. Biochim Biophys Acta 1753(2):209–216. https://doi.org/10.1016/j.bbapap.2005.08.004

    Article  PubMed  CAS  Google Scholar 

  61. Wang ZY, Loo TY, Shen JG, Wang N, Wang DM, Yang DP, Mo SL, Guan XY, Chen JP (2012) LDH-A silencing suppresses breast cancer tumorigenicity through induction of oxidative stress mediated mitochondrial pathway apoptosis. Breast Cancer Res Treat 131(3):791–800. https://doi.org/10.1007/s10549-011-1466-6

    Article  PubMed  CAS  Google Scholar 

  62. Zhang Y, Zhang X, Wang X, Gan L, Yu G, Chen Y, Liu K, Li P, Pan J, Wang J, Qin S (2012) Inhibition of LDH-A by lentivirus-mediated small interfering RNA suppresses intestinal-type gastric cancer tumorigenicity through the downregulation of Oct4. Cancer Lett 321(1):45–54. https://doi.org/10.1016/j.canlet.2012.03.013

    Article  PubMed  CAS  Google Scholar 

  63. Milliner DS (2016) siRNA therapeutics for primary hyperoxaluria: a beginning. Mol Ther 24(4):666–667. https://doi.org/10.1038/mt.2016.50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Castello R, Borzone R, D’Aria S, Annunziata P, Piccolo P, Brunetti-Pierri N (2016) Helper-dependent adenoviral vectors for liver-directed gene therapy of primary hyperoxaluria type 1. Gene Ther 23(2):129–134. https://doi.org/10.1038/gt.2015.107

    Article  PubMed  CAS  Google Scholar 

  65. Roncador A, Oppici E, Talelli M, Pariente AN, Donini M, Dusi S, Voltattorni CB, Vicent MJ, Cellini B (2017) Use of polymer conjugates for the intraperoxisomal delivery of engineered human alanine:glyoxylate aminotransferase as a protein therapy for primary hyperoxaluria type I. Nanomedicine 13(3):897–907. https://doi.org/10.1016/j.nano.2016.12.011

    Article  PubMed  CAS  Google Scholar 

  66. Cellini B, Montioli R, Oppici E, Astegno A, Voltattorni CB (2014) The chaperone role of the pyridoxal 5′-phosphate and its implications for rare diseases involving B6-dependent enzymes. Clin Biochem 47(3):158–165. https://doi.org/10.1016/j.clinbiochem.2013.11.021

    Article  PubMed  CAS  Google Scholar 

  67. Oppici E, Fargue S, Reid ES, Mills PB, Clayton PT, Danpure CJ, Cellini B (2015) Pyridoxamine and pyridoxal are more effective than pyridoxine in rescuing folding-defective variants of human alanine:glyoxylate aminotransferase causing primary hyperoxaluria type I. Hum Mol Genet 24(19):5500–5511. https://doi.org/10.1093/hmg/ddv276

    Article  PubMed  CAS  Google Scholar 

  68. Miyata N, Steffen J, Johnson ME, Fargue S, Danpure CJ, Koehler CM (2014) Pharmacologic rescue of an enzyme-trafficking defect in primary hyperoxaluria 1. Proc Natl Acad Sci USA 111(40):14406–14411. https://doi.org/10.1073/pnas.1408401111

    Article  PubMed  CAS  Google Scholar 

  69. Oppici E, Montioli R, Dindo M, Maccari L, Porcari V, Lorenzetto A, Chellini S, Voltattorni CB, Cellini B (2015) The chaperoning activity of amino-oxyacetic acid on folding-defective variants of human alanine:glyoxylate aminotransferase causing primary hyperoxaluria type I. ACS Chem Biol 10(10):2227–2236. https://doi.org/10.1021/acschembio.5b00480

    Article  PubMed  CAS  Google Scholar 

  70. Hatch M, Gjymishka A, Salido EC, Allison MJ, Freel RW (2011) Enteric oxalate elimination is induced and oxalate is normalized in a mouse model of primary hyperoxaluria following intestinal colonization with oxalobacter. Am J Physiol Gastrointest Liver Physiol 300(3):G461–G469. https://doi.org/10.1152/ajpgi.00434.2010

    Article  PubMed  CAS  Google Scholar 

  71. Hoppe B, Beck B, Gatter N, von Unruh G, Tischer A, Hesse A, Laube N, Kaul P, Sidhu H (2006) Oxalobacter formigenes: a potential tool for the treatment of primary hyperoxaluria type 1. Kidney Int 70(7):1305–1311. https://doi.org/10.1038/sj.ki.5001707

    Article  PubMed  CAS  Google Scholar 

  72. Hoppe B, Groothoff JW, Hulton SA, Cochat P, Niaudet P, Kemper MJ, Deschenes G, Unwin R, Milliner D (2011) Efficacy and safety of oxalobacter formigenes to reduce urinary oxalate in primary hyperoxaluria. Nephrol Dial Transpl 26(11):3609–3615. https://doi.org/10.1093/ndt/gfr107

    Article  Google Scholar 

  73. Hoppe B, Niaudet P, Salomon R, Harambat J, Hulton SA, Van’t Hoff W, Moochhala SH, Deschenes G, Lindner E, Sjogren A, Cochat P (2017) A randomised phase I/II trial to evaluate the efficacy and safety of orally administered oxalobacter formigenes to treat primary hyperoxaluria. Pediatr Nephrol 32(5):781–790. https://doi.org/10.1007/s00467-016-3553-8

    Article  PubMed  Google Scholar 

  74. Milliner D, Hoppe B, Groothoff J (2018) A randomised phase II/III study to evaluate the efficacy and safety of orally administered oxalobacter formigenes to treat primary hyperoxaluria. Urolithiasis 46(4):313–323. https://doi.org/10.1007/s00240-017-0998-6

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is funded by the Rare Kidney Stone Consortium (U54DK83908), which is part of Rare Diseases Clinical Research Network (RDCRN), an initiative of the Office of Rare Diseases Research (ORDR), National Center for Advancing Translational Sciences (NCATS). This consortium is funded through collaboration between NCATS, and the National Institute of Diabetes and Digestive and Kidney Diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Sas.

Ethics declarations

Conflict of interest

Dr. Sas has not conflicts of interest. Dr. Harris has a research grant from Otsuka Pharmaceuticals and consulting agreements (funds to his research program) with Mitobridge, Vertex, and Regulus. Dr. Milliner has conducted research funded in part or in whole by OxThera, Allena, and Alnylam pharmaceutical companies. She has consulting contracts (funds to her research program) with OxThera, Alnylam, and Dicerna for general consulting and and/or as chair of a Data Safety Monitoring Board for a clinical trial.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sas, D.J., Harris, P.C. & Milliner, D.S. Recent advances in the identification and management of inherited hyperoxalurias. Urolithiasis 47, 79–89 (2019). https://doi.org/10.1007/s00240-018-1093-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-018-1093-3

Keywords

Navigation