European Food Research and Technology

, Volume 240, Issue 6, pp 1129–1133 | Cite as

Identification of four Donax species by PCR–RFLP analysis of cytochrome c oxidase subunit I (COI)

  • A. Nantón
  • R. Freire
  • A. Arias-Pérez
  • M. B. Gaspar
  • J. Méndez
Original Paper

Abstract

Four Donax species, D. semistriatus, D. trunculus, D. variegatus and D. vittatus, are found on European coasts. Nevertheless, despite their economic importance there is not a reliable method to differentiate these species independently of their size or condition. Such a method could help to protect consumer rights and avoid commercial fraud due to the replacement of valuable species by less valuable ones with similar morphological traits. In this work, the sequence of the mitochondrial cytochrome oxidase subunit I region was examined in individuals of these species to identify restriction site variation and develop polymerase chain reaction–restriction fragment length polymorphisms assays. Species-specific restriction endonuclease patterns were found with the enzymes AluI, HaeIII and MspI, allowing an exact identification of Donax species. This methodology provides simple, reliable and cost-effective identification of four Donax species and may be useful to prevent commercial fraud and to increase food traceability.

Keywords

Donax species Species identification PCR–RFLP COI 

Notes

Acknowledgments

We thank Jose García for his technical assistance in the laboratory and Luisa Martínez for her constructive and valuable comments. This work was supported by the Consellería de Economía e Industria (Xunta de Galicia) through project 10MMA103013 and by Ministerio de Educación of Spain through a predoctoral FPU fellowship awarded to Ana Nantón.

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

References

  1. 1.
    Helm MM, Bourne N, Lovatelli A (comp/ed) (2004) Hatchery culture of bivalves. A practical manual. Fisheries Technical Paper No. 471. FAO, Rome, p 177Google Scholar
  2. 2.
    Ansell AD (1983) The biology of the genus Donax. Sandy beaches as ecosystems. In: McLanchlan A, Erasmus T (eds) Sandy beaches as ecosystems. Junk, The HagueGoogle Scholar
  3. 3.
    Rufino MM, Gaspar MB, Pereira AM, Maynou F, Monteiro CC (2010) Ecology of megabenthic bivalve communities from sandy beaches on the south coast of Portugal. Sci Mar 74:163–178CrossRefGoogle Scholar
  4. 4.
    Salas C, Tirado C, Manjón-Cabeza ME (2001) Sublethal foot-predation on Donacidae (Mollusca: Bivalvia). J Sea Res 46:43–56CrossRefGoogle Scholar
  5. 5.
    Bossier P (1999) Authentication of seafood products by DNA patterns. J Food Sci 64:189–193CrossRefGoogle Scholar
  6. 6.
    García-Rodríguez FJ, Ponce-Díaz G, Muñoz-García I, González-Armas R, Pérez-Enríquez R (2008) Mitochondrial DNA markers to identify commercial spiny lobster species (Panulirus spp.) from the Pacific coast of Mexico: an application on phyllosoma larvae. Fish Bull 106:204–212Google Scholar
  7. 7.
    Fernández-Tajes J, Longa A, García-Gil J, Chiu Y-W, Huang Y-S, Méndez J, Lee R-S (2011) Alternative PCR-RFLP methods for mussel Mytilus species identification. Eur Food Res Technol 233:791–796CrossRefGoogle Scholar
  8. 8.
    Klinbunga S, Khamnamtong N, Tassanakajon A, Puanglarp N, Jarayabhand P, Yoosukh W (2003) Molecular genetic identification tools for three commercially cultured oysters (Crassostrea belcheri, Crassostrea iredalei, and Saccostrea cucullata) in Thailand. Mar Biotechnol 5:27–36CrossRefGoogle Scholar
  9. 9.
    Pereira F, Carneiro J, Amorim A (2008) Identification of species with DNA-based technology: current progress and challenges. Recent Pat DNA Gene Seq 2:187–199CrossRefGoogle Scholar
  10. 10.
    Mackie IM, Pryde SE, Gonzales-Sotelo C, Medina I, Perez-Martin R, Quinteiro J, Rey-Mendez M, Rehbein H (1999) Challenges in the identification of species of canned fish. Trends Food Sci Technol 10:9–14CrossRefGoogle Scholar
  11. 11.
    Macedo MC, Macedo MI, Borges JP (1999) Conchas marinhas de Portugal. Editorial Verbo, LisboaGoogle Scholar
  12. 12.
    Tebble N (1966) British bivalve seashells. A handbook for identification. British Museum, EdinburghGoogle Scholar
  13. 13.
    Walsh PS, Metzger DA, Higuchi R (1991) Chelex-100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513Google Scholar
  14. 14.
    Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299Google Scholar
  15. 15.
    Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  16. 16.
    Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386Google Scholar
  17. 17.
    Fernández A, García T, Asensio L, Rodríguez MA, González I, Hernández PE, Martín R (2001) PCR-RFLP analysis of the internal transcribed spacer (ITS) region for identification of 3 clam species. J Food Sci 66:657–661CrossRefGoogle Scholar
  18. 18.
    Freire R, Insua A, Méndez J (2005) Cerastoderma glaucum 5S ribosomal DNA: characterization of the repeat unit, divergence with respect to Cerastoderma edule, and PCR-RFLPs for the identification of both cockles. Genome 48:427–442CrossRefGoogle Scholar
  19. 19.
    Freire R, Arias A, Méndez J, Insua A (2011) Identification of European commercial cockles (Cerastoderma edule and C. glaucum) by species-specific PCR amplification of the ribosomal DNA ITS region. Eur Food Res Technol 232:83–86CrossRefGoogle Scholar
  20. 20.
    Santaclara FJ, Espineira M, Cabado G, Aldasoro A, González-Lavin N, Vieites JM (2006) Development of a method for the genetic identification of mussel species belonging to Mytilus, Perna, Aulacomya, and other genera. J Agric Food Chem 54:8461–8470CrossRefGoogle Scholar
  21. 21.
    Fernández-Tajes J, Méndez J (2007) Identification of the razor clam species Ensis arcuatus, E. siliqua, E. directus, E. macha, and Solen marginatus using PCR-RFLP analysis of the 5S rDNA region. J Agric Food Chem 55:7278–7282CrossRefGoogle Scholar
  22. 22.
    Freire R, Fernández-Tajes J, Méndez J (2008) Identification of razor clams Ensis arcuatus and Ensis siliqua by PCR-RFLP analysis of ITS1 region. Fish Sci 74:511–515CrossRefGoogle Scholar
  23. 23.
    López-Piñón MJ, Insua A, Méndez J (2002) Identification of four scallop species using PCR and restriction analysis of the ribosomal DNA internal transcribed spacer region. Mar Biotechnol 4:495–502CrossRefGoogle Scholar
  24. 24.
    Pereira AM, Fernández-Tajes J, Gaspar MB, Méndez J (2012) Identification of the wedge clam Donax trunculus by a simple PCR technique. Food Control 23:268–270CrossRefGoogle Scholar
  25. 25.
    Hare MP, Palumbi SR, Butman CA (2000) Single-step species identification of bivalve larvae using multiplex polymerase chain reaction. Mar Biol 137(5–6):953–961CrossRefGoogle Scholar
  26. 26.
    Theologidis I, Fodelianakis S, Gaspar MB, Zouros E (2008) Doubly uniparental inheritance (DUI) of mitochondrial DNA in Donax trunculus (Bivalvia : Donacidae) and the problem of its sporadic detection in Bivalvia. Evolution 62:959–970CrossRefGoogle Scholar
  27. 27.
    Stewart DT, Saavedra C, Stanwood RR, Ball AO, Zouros E (1995) Male and female mitochondrial-DNA lineages in the blue mussel (Mytilus edulis) species group. Mol Biol Evol 12:735–747Google Scholar
  28. 28.
    Sutherland B, Stewart D, Kenchington ER, Zouros E (1998) The fate of paternal mitochondrial DNA in developing female mussels, Mytilus edulis: implications for the mechanism of doubly uniparental inheritance of mitochondrial DNA. Genetics 148:341–347Google Scholar
  29. 29.
    Westfall KM, Wimberger PH, Gardner JPA (2010) An RFLP assay to determine if Mytilus galloprovincialis Lmk. (Mytilidae; Bivalvia) is of Northern or Southern hemisphere origin. Mol Ecol Resour 10:573–575CrossRefGoogle Scholar
  30. 30.
    Hebert PDN, Ratnasingham S, deWaard JR (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc B Biol Sci 270:S96–S99CrossRefGoogle Scholar
  31. 31.
    Therriault TW, Docker MF, Orlova MI, Heath DD, MacIsaac HJ (2004) Molecular resolution of the family Dreissenidae (Mollusca: Bivalvia) with emphasis on Ponto Caspian species, including first report of Mytilopsis leucophaeata in the Black Sea basin. Mol Phylogenet Evol 30:479–489CrossRefGoogle Scholar
  32. 32.
    Boudry P, Heurtebise S, Collet B, Cornette F, Gerard A (1998) Differentiation between populations of the Portuguese oyster, Crassostrea angulata (Lamark) and the Pacific oyster, Crassostrea gigas (Thunberg), revealed by mtDNA RFLP analysis. J Experimental Mar Biol Ecol 226:279–291CrossRefGoogle Scholar
  33. 33.
    Yu ZN, Kong XY, Zhang LS, Guo XM, Xiang JH (2003) Taxonomic status of four Crassostrea oysters from China as inferred from mitochondrial DNA sequences. J Shellfish Res 22:31–38Google Scholar
  34. 34.
    Liu J, Li Q, Kong L, Yu H, Zheng X (2011) Identifying the true oysters (Bivalvia: Ostreidae) with mitochondrial phylogeny and distance-based DNA barcoding. Mol Ecol Resour 1:820–830CrossRefGoogle Scholar
  35. 35.
    Feng Y, Li Q, Kong L, Zheng X (2011) DNA barcoding and phylogenetic analysis of Pectinidae (Mollusca: Bivalvia) based on mitochondrial COI and 16S rRNA genes. Mol Biol Rep 38:291–299CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • A. Nantón
    • 1
  • R. Freire
    • 1
  • A. Arias-Pérez
    • 1
  • M. B. Gaspar
    • 2
  • J. Méndez
    • 1
  1. 1.Grupo Xenomar, Departamento de Bioloxía Celular e Molecular, Facultade de CienciasUniversidade da CoruñaA CoruñaSpain
  2. 2.Instituto Português do Mar e da Atmosfera, I. P.OlhãoPortugal

Personalised recommendations