Skip to main content
Log in

Evaluation of quantum dots applied as switchable layer in a light-controlled electrochemical sensor

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Gold electrodes with switchable conductance are created by coating the gold surface with different colloidal quantum dots. For the quantum dot immobilization, a dithiol compound was used. By polarizing the electrode and applying a light pointer, local photocurrents were generated. The performance of this setup was characterized for a variety of different nanoparticle materials regarding drift and signal-to-noise ratio. We varied the following parameters: quantum dot materials and immobilization protocol. The results indicate that the performance of the sensor strongly depends on how the quantum dots are bound to the gold electrode. The best results were obtained by inclusion of an additional polyelectrolyte film, which had been fabricated using layer-by-layer assembly.

Gold electrode with switchable conductance created by the coating the gold surface with different colloidal quantum dots

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. George M, Parak WJ, Gaub HE (2000) Highly integrated surface potential sensors. Sens Actuators, B 69:266–275

    Article  Google Scholar 

  2. McConnell HM, Owicki JC, Parce JW, Miller DL, Baxter GT, Wada HG, Pitchford S (1992) The cytosensor microphysiometer: biological applications of silicon technology. Science 257:1906–1912

    Article  CAS  Google Scholar 

  3. Owicki JC, Bousse L, Hafeman D, Kirk GL, Olson JD, Wada HG, Parce JW (1994) The light-addressable potentiometric sensor: principles and biological applications. Annu Rev Biophys Biomol Struct 23:87–113

    Article  CAS  Google Scholar 

  4. Engström O, Carlsson A (1983) Scanned light technique for the investigation of insulator–semiconductor interfaces. J Appl Physi 54:5245–5251

    Article  Google Scholar 

  5. Löfdahl M, Eriksson M, Lundström I (2000) Chemical images. Sens Actuators, B 70:77–82

    Article  Google Scholar 

  6. Lundström I, Erlandsson R, Frykman U, Hedborg E, Spetz A, Sundgren H, Welin S, Winquist F (1991) Artificial ‘olfactory’ images from a chemical sensor using a light-pulse technique. Nature 352:47–50

    Article  Google Scholar 

  7. Schoning MJ, Wagner T, Wang C, Otto R, Yoshinobu T (2005) Development of a handheld 16 channel pen-type LAPS for electrochemical sensing. Sens Actuators, B 108:808–814

    Article  Google Scholar 

  8. Hafeman DG, Parce JW, McConnell HM (1988) Light-addressable potentiometric sensor for biochemical systems. Science 240:1182–1185

    Article  CAS  Google Scholar 

  9. Adami M, Piras L, Lanzi M, Fanigliulo A, Vakula S, Nicolini C (1994) Monitoring of enzymatic activity and quantitative measurements of substrates by means of a newly designed silicon-based potentiometric sensor. Sens Actuators, B 18–19:178–182

    Article  Google Scholar 

  10. Bousse L, Kirk G, Sigal G (1990) Biosensors for detection of enzymes immobilized in microvolume reaction chambers. Sens Actuators, B 1:555–560

    Article  Google Scholar 

  11. Bousse L, Owicki JC, Parce JW (1992) Biosensors with microvolume reaction chambers. Chemical Sensor Technology 4:145–166

    CAS  Google Scholar 

  12. Eklund SE, Taylor D, Kozlov E, Prokop A, Cliffel DE (2004) A microphysiometer for simultaneous measurement of changes in extracelular glucose, lactate, oxygen, and acidification rate. Anal Chem 76:519–527

    Article  CAS  Google Scholar 

  13. Ismail ABM, Yoshinobu T, Iwasaki H, Sugihara H, Yukimasa T, Hirata I, Iwata H (2003) Investigation on light-addressable potentiometric sensor as a possible cell–semiconductor hybrid. Biosens Bioelectron 18:1509–1514

    Article  CAS  Google Scholar 

  14. Lee WE, Thompson HG, Hall JG, Bader DE (2000) Rapid detection and identification of biological and chemical agents by immunoassay, gene probe assay and enzyme inhibition using a silicon-based biosensor. Biosens Bioelectron 14:795–804

    Article  CAS  Google Scholar 

  15. Piras L, Adami M, Fenu S, Dovis M, Nicolini C (1996) Immunoenzymatic application of a redox potential biosensor. Anal Chim Acta 335:127–135

    Article  CAS  Google Scholar 

  16. Poghossion A, Yoshinobu T, Simonis A, Ecken H, Lüth H, Schöning MJ (2001) Penicillin detection by means of field-effect based sensors: ENFET, capacitive EIS sensor or LAPS? Sens Actuators, B 78:237–242

    Article  Google Scholar 

  17. Stein B, George M, Gaub HE, Behrends JC, Parak WJ (2003) Spatially resolved monitoring of the cellular metabolic activity with a semiconductor-based biosensor. Biosens Bioelectron 18:31–41

    Article  CAS  Google Scholar 

  18. Bousse L, Mostarshed S, Hafeman D, Sartore M, Adami M, Nicolini C (1994) Investigation of carrier transports through silicon wafers by photocurrent measurements. J Appl Physi 75:4000–4008

    Article  CAS  Google Scholar 

  19. George M, Parak WJ, Gerhardt I, Moritz W, Kaesen F, Geiger H, Eisele I, Gaub HE (2000) Investigation of the spatial resolution of the light-addressable potentiometric sensor (LAPS). Sens Actuators, A 83:149–249

    Google Scholar 

  20. Parak WJ, Hofmann UG, Gaub HE, Owicki JC (1997) Lateral resolution of light addressable potentiometric sensors: an experimental and theoretical investigation. Sens Actuators, A 63:47–57

    Article  Google Scholar 

  21. Moritz W, Gerhardt I, Roden D, Xu M, Krause S (2000) Photocurrent measurements for laterally resolved interface characterization. Fresenius' J Anal Chem 367:329–333

    Article  CAS  Google Scholar 

  22. Ito Y (1998) High-spatial resolution LAPS. Sens Actuators, B 52:107–111

    Article  Google Scholar 

  23. Moritz W, Yoshinobu T, Finger F, Krause S, Martin-Fernandez M, Schöning MJ (2004) High resolution LAPS using amorphous silicon as the semiconductor material. Sens Actuators, B 103:436–441

    Article  Google Scholar 

  24. Nakao M, Inoue S, Oishi R, Yoshinobu T, Iwasaki H (1995) Observation of microorganism colonies using a scanning-laser-beam pH-sensing microscope. J Ferment Bioeng 79:163–166

    Article  CAS  Google Scholar 

  25. Nakao M, Inoue S, Yoshinobu T, Iwasaki H (1996) High-resolution pH imaging sensor for microscopic observation of microorganisms. Sens Actuators, B 34:234–239

    Article  Google Scholar 

  26. Yoshinobu T, Iwasaki H, Ui Y, Furuichi K, Ermolenko Y, Mourzina Y, Wagner T, Näther N, Schöning MJ (2005) The light-addressable potentiometric sensor for multi-ion sensing and imaging. Methods 37:94–102

    Article  CAS  Google Scholar 

  27. Stoll C, Kudera S, Parak WJ, Lisdat F (2006) Quantum dots on gold: electrodes for photoswitchable cytochrome c electrochemistry. Small 2:741–743

    Article  CAS  Google Scholar 

  28. Stoll C, Gehring C, Schubert K, Zanella M, Parak WJ, Lisdat F (2008) Photoelectrochemical signal chain based on quantum dots on gold—sensitive to superoxide radicals in solution. Biosens Bioelectron 24:260–265

    Article  CAS  Google Scholar 

  29. Schubert K, Khalid W, Yue Z, Parak WJ, Lisdat F (2009) Quantum-dot-modified electrode in combination with NADH-dependent dehydrogenase reactions for substrate analysis. Langmuir. doi:10.1021/la902499e

  30. Kucur E, Bucking W, Arenz S, Giernoth R, Nann T (2006) Heterogeneous charge transfer of colloidal nanocrystals in ionic liquids. ChemPhysChem 7:77–81

    Article  CAS  Google Scholar 

  31. Kucur E, Riegler J, Urban GA, Nann T (2003) Determination of quantum confinement in CdSe nanocrystals by cyclic voltammetry. J Chem Phys 119:2333–2337

    Article  CAS  Google Scholar 

  32. Zayats M, Willner I (2008) Photoelectrochemical and optical applications of semiconductor quantum dots for bioanalysis. Adv Biochem Eng Biotechnol 109:255–283

    CAS  Google Scholar 

  33. Willner I, Baron R, Willner B (2007) Integrated nanoparticle–biomolecule systems for biosensing and bioelectronics. Biosens Bioelectron 22:1841–1852

    Article  CAS  Google Scholar 

  34. Katz E, Zayats M, Willner I, Lisdat F (2006) Controlling the direction of photocurrents by means of CdS nanoparticles and cytochrome c-mediated biocatalytic cascades. Chem Commun 1395–1397

  35. Xiao Y, Patolsky F, Katz E, Hainfeld JF, Willner I (2003) “Plugging into enzymes”: nanowiring of redox enzymes by a gold nanoparticle. Science 299:1877–1881

    Article  CAS  Google Scholar 

  36. Ju HX, Liu SQ, Ge BX, Lisdat F, Scheller FW (2002) Electrochemistry of cytochrome c immobilized on colloidal gold modified carbon paste electrodes and its electrocatalytic activity. Electroanalysis 14:141–147

    Article  CAS  Google Scholar 

  37. Licht S, Myung N, Sun Y, Light A (1996) Addressable photoelectrochemical cyanide sensor. Anal Chem 68:954–959

    Article  CAS  Google Scholar 

  38. Kudera S, Carbone L, Carlino E, Cingolani R, Cozzoli PD, Manna L (2007) Synthesis routes for the growth of complex nanostructures. Physica E-Low-Dimensional Systems & Nanostructures 37:128–133

    Article  CAS  Google Scholar 

  39. Kumar S, Nann T (2006) Shape control of II–VI semiconductor nanomaterials. Small 2:316–329

    Article  CAS  Google Scholar 

  40. Reiss P, Bleuse J, Pron A (2002) Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion. Nano Lett 2:781–784

    Article  CAS  Google Scholar 

  41. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG (1997) (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101:9463–9475

    Article  CAS  Google Scholar 

  42. Kudera S, Carbone L, Casula MF, Cingolani R, Falqui A, Snoeck E, Parak WJ, Manna L (2005) Selective growth of PbSe on one or both tips of colloidal semiconductor nanorods. Nano Lett 5:445–449

    Article  CAS  Google Scholar 

  43. Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277:1232–1237

    Article  CAS  Google Scholar 

  44. Uchida H, Zhang WY, Katsube T (1996) High speed chemical image sensor with digital LAPS system. Sens Actuators, B 34:446–449

    Article  Google Scholar 

  45. Hu K, Brust M, Bard AJ (1998) Characterization and surface charge measurement of self-assembled CdS nanoparticle films. Chem Mater 10:1160–1165

    Article  CAS  Google Scholar 

  46. von Holt B, Kudera S, Weiss A, Schrader TE, Manna L, Parak WJ, Braun M (2008) Ligand exchange of CdSe nanocrystals probed by optical spectroscopy in the visible and mid-IR. J Mater Chem 18:2728–2732

    Article  Google Scholar 

  47. Bakkers EPAM, Reitsma E, Kelly JJ, Vanmaekelbergh D (1999) Excited-state dynamics in CdS quantum dots adsorbed on a metal electrode. J Phys Chem B 103(14):2781–2788

    Article  CAS  Google Scholar 

  48. Kreft O, Muñoz_Javier A, Sukhorukov GB, Parak WJ (2007) Polymer microcapsules as mobile local pH-sensors. J Mater Chem 17:4471–4476

    Article  CAS  Google Scholar 

  49. Beissenhirtz MK, Scheller FW, Lisdat F (2004) A superoxide sensor based on a multilayer cytochrome c electrode. Anal Chem 76:4665–4671

    Article  CAS  Google Scholar 

  50. Caruso F, Schüler C (2000) Enzyme multilayers on colloid particles: assembly, stability, and enzymatic activity. Langmuir 16:9595–9603

    Article  CAS  Google Scholar 

  51. Lisdat F, Dronov R, Mohwald H, Scheller FW, Kurth DG (2009) Self-assembly of electro-active protein architectures on electrodes for the construction of biomimetic signal chains. Chem Commun 274–283

Download references

Acknowledgments

This work was funded by the German Research Foundation (DFG grants Pa 794/3-1 and Li 706/2-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang J. Parak.

Additional information

Zhao Yue and Waqas Khalid contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yue, Z., Khalid, W., Zanella, M. et al. Evaluation of quantum dots applied as switchable layer in a light-controlled electrochemical sensor. Anal Bioanal Chem 396, 1095–1103 (2010). https://doi.org/10.1007/s00216-009-3347-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3347-y

Keywords

Navigation