Skip to main content
Log in

Gauge Momenta as Casimir Functions of Nonholonomic Systems

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider nonholonomic systems with symmetry possessing a certain type of first integral which is linear in the velocities. We develop a systematic method for modifying the standard nonholonomic almost Poisson structure that describes the dynamics so that these integrals become Casimir functions after reduction. This explains a number of recent results on Hamiltonization of nonholonomic systems, and has consequences for the study of relative equilibria in such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agostinelli C.: Nuova forma sintetica delle equazioni del moto di un sistema anolonomo ed esistenza di un integrale lineare nelle velocita. Boll. Un. Mat. Ital. 11, 1–9 (1956)

    MathSciNet  MATH  Google Scholar 

  2. Appell P.: Sur l’intégration des équations du mouvement d’un corps pesant de révolution roulant par une arête circulaire sur un plan horizontal; cas particulier du cerceau. Rend. Circolo Mat. Palermo. 14, 1–6 (1900)

    Article  MATH  Google Scholar 

  3. Balseiro, P., García-Naranjo, L.C.: Gauge transformations, twisted Poisson brackets and Hamiltonization of nonholonomic systems. Arch. Ration. Mech. Anal. 205(1), 267–310

  4. Balseiro P.: The Jacobiator of nonholonomic systems and the geometry of reduced nonholonomic brackets. Arch. Ration. Mech. Anal. 214, 453–501 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Balseiro, P., Sansonetto, N.: A geometric characterisation of certain first integrals for nonholonomic systems with symmetries. SIGMA 12, 14 (2016)

  6. Balseiro P.: Hamiltonization of solids of revolution through reduction. J. Nonlinear Sci., 27, 2001–2035 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Balseiro, P., Yapu-Quispe, L.P.: (in preparation)

  8. Bates L., Graumann H., MacDonnell C.: Examples of gauge transformation laws in nonholonomic systems. Rep. Math. Phys. 37, 295–308 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Bates L., Sniatycki J.: Nonholonomic reduction. Rep. Math. Phys. 32, 99–115 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Bizyaev I.A., Bolsinov A., Borisov A., Mamaev I.: Topology and bifurcations in nonholonomic mechanics. Int. J. Bifurc. Chaos Appl. Sci. Eng. 25(10), 1530028 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bloch A.M., Krishnaprasad P.S., Marsden J.E., Murray R.M.: Nonholonomic mechanical systems with symmetry. Arch. Ration. Mech. Anal. 136, 21–99 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bloch A.M., Marsden J.E., Zenkov D.V.: Quasivelocities and symmetries in non-holonomic systems. Dyn. Syst. 24, 187–222 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Borisov A.V., Mamaev I.S.: Chaplygin’s Ball rolling problem is hamiltonian. Math. Notes 70, 793–795 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Borisov A.V., Mamaev I.S.: Rolling of a rigid body on a plane and sphere Hierarchy of dynamics. Regul. Chaotic Dyn. 7, 177–200 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Borisov A.V., Mamaev I.S., Kilin A.A.: Rolling of a ball on a surface New integrals and hierarchy of dynamics. Regul. Chaotic Dyn. 7, 201–219 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Borisov, A.V., Mamaev, I.S.: Isomorphism and hamilton representation of some non-holonomic systems. Sib. Math. J. 48, 33–45 (2007). See also: arXiv:nlin.-SI/0509036 v. 1 (Sept 21, 2005).

  17. Borisov A.V., Mamaev I.S.: Symmetries and reduction in nonholonomic mechanics. Regul. Chaotic Dyn. 20, 553–604 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Cantrijn F., de León M., de Martín Diego D.: On almost-Poisson structures in nonholonomic mechanics. Nonlinearity 12, 721–737 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Cushman, R., Duistermaat, J.J., śniatycki, J.: Geometry of nonholonomically constrained systems. Advanced Series in Nonlinear Dynamics, Vol. 26. World Scientific Publishing, Singapore, 2010

  20. Chaplygin, S.A.: On a ball’s rolling on a horizontal plane. Regul. Chaotic Dyn. 7, 131–148 (2002). [original paper in Mathematical Collection of the Moscow Mathematical Society, 24 (1903), 139–168]

  21. Chaplygin, S.A.: On the theory of the motion of nonholonomic systems. The reducing-multiplier Theorem. Regul. Chaotic Dyn. 13, 369–376 (2008). [Translated from Matematicheskiǐsbornik (Russian) 28 (1911), by A. V. Getling]

  22. Chaplygin, S.A.: On a motion of a heavy body of revolution on a horizontal plane.Collected works. Vol. I. Theoretical mechanics. Mathematics (Russian), 51–57, Gos. Izd. Tekhn.-Teoret. Lit., Moscow, 1948 [see MR0052352 (14,609i)]. English translation in: Regul. Chaotic Dyn.7(2), 119–130 (2002)

  23. de León M., Marrero J.C., de Martín Diego D.: Linear almost Poisson structures and Hamilton-Jacobi equation Applications to nonholonomic mechanics. J. Geom. Mech. 2, 159–198 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Duistermaat J.J., Kolk J.A.C.: Lie Groups. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  25. Ehlers, K., Koiller, J., Montgomery, R., Rios, P.M.: Nonholonomic systems via moving frames: Cartan Equivalence and Chaplygin Hamiltonization. In The breath of Symplectic and Poisson Geometry, Progress in Mathematics, Vol. 232, 75–120 (2004)

  26. Fassò F., Giacobbe A., Sansonetto N.: Periodic flows, rank-two Poisson structures, and nonholonomic mechanics. Regul. Chaotic Dyn. 10, 267–284 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Fassò F., Ramos A., Sansonetto N.: The reaction annihilator distribution and the nonholonomic Noether theorem for lifted actions. Regul. Chaotic Dyn., 12, 579–588 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Fassò F., Giacobbe A., Sansonetto N.: Gauge conservation laws and the momentum equation in nonholonomic mechanics. Rep. Math. Phys. 62, 345–367 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Fassò F., Giacobbe A., Sansonetto N.: Linear weakly Noetherian constants of motion are horizontal gauge momenta. J. Geom. Mech. 4, 129–136 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Fassò F., Sansonetto N.: An elemental overview of the nonholonomic Noether theorem. Int. J. Geom. Methods Mod. Phys. 6, 1343–1355 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Fedorov Y.N., Kozlov V.V.: Various aspects of n-dimensional rigid body dynamics. Am. Math. Soc. Transl. (2) 168, 141–171 (1995)

    MathSciNet  MATH  Google Scholar 

  32. Fedorov Y.N., Jovanović B.: Nonholonomic LR systems as generalized Chaplygin systems with an invariant measure and flows on homogeneous spaces. J. Nonlinear Sci. 14, 341–381 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. García-Naranjo, L.C.: Almost Poisson brackets for nonholonomic systems on Lie groups. Ph.D. dissertation, University of Arizona (2007)

  34. García-Naranjo L.C.: Reduction of almost Poisson brackets and Hamiltonization of the Chaplygin sphere. Discrete Contin. Dyn. Syst. Ser. S 3, 37–60 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Grabowski, J., de León, M., Marrero, J.C., Martín de Diego, D.: Nonholonomic constraints: a new viewpoint. J. Math. Phys. 50, 013520 (2009)

  36. Ibort A., de León M., Marrero J.C., de Martín Diego D.: Dirac brackets in constrained dynamics. Fortschr. Phys. 47, 459–492 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  37. Iliev Il., Semerdzhiev Khr.: Relations between the first integrals of a nonholonomic mechanical system and of the corresponding system freed of constraints. J. Appl. Math. Mech. 36, 381–388 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  38. Iliev Il.: On first integrals of a nonholonomic mechanical system. J. Appl. Math. Mech. 39, 147–150 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  39. Jost J.: Riemannian Geometry and Geometric Analysis. Springer, Berlin (1000)

    MATH  Google Scholar 

  40. Jotz M., Ratiu T.S.: Dirac structures, nonholonomic systems and reduction. Rep. Math. Phys. 69, 5–56 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Jovanović B.: Hamiltonization and integrability of the Chaplygin sphere in \({\mathbb{R}^n}\). J. Nonlinear Sci. 20, 569–593 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Koiller J.: Reduction of some classical nonholonomic systems with symmetry. Arch. Ration. Mech. Anal. 118, 113–148 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  43. Marle, C.M.: Various approaches to conservative and nonconservative nonholonomic systems. Proceedings Workshop on Non-Holonomic Constraints in Dynamics (Calgary, August 26–29, 1997) Rep. Math. Phys. 42, 211–229 1998

  44. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics with Symmetry. Texts in Applied Mathematics, Vol. 17. Springer, Berlin 1994

  45. Ramos A.: Poisson structures for reduced non-holonomic systems. J. Phys. A 37, 4821–4842 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Routh, E.D.: Dynamics of a System of Rigid Bodies, 7th ed., revised and enlarged. Dover Publications, Inc., New York 1960

  47. Ševera, P., Weinstein, A.: Poisson geometry with a 3-form background. Noncommutative geometry and string theory (Yokohama, 2001). Progr. Theor. Phys. Suppl. 144, 145–154 (2001)

  48. Tsiganov A.: Poisson structures for two nonholonomic systems with partially reduced symmetries. J. Geom. Mech. 6(3), 417–440 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. van der Schaft A.J., Maschke B.M.: On the Hamiltonian formulation of nonholonomic mechanical systems. Rep. Math. Phys. 34, 225–233 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Weber R.W.: Hamiltonian systems with constraints and their meaning in mechanics. Arch. Ration. Mech. Anal. 91, 309–335 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis C. García-Naranjo.

Additional information

Communicated by M. Ortiz

This research was made possible by a Newton Advanced Fellowship from the Royal Society.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Naranjo, L.C., Montaldi, J. Gauge Momenta as Casimir Functions of Nonholonomic Systems. Arch Rational Mech Anal 228, 563–602 (2018). https://doi.org/10.1007/s00205-017-1200-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-017-1200-6

Navigation