Skip to main content
Log in

Hamiltonization of Solids of Revolution Through Reduction

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this paper, we study the relation between conserved quantities of nonholonomic systems and the hamiltonization problem employing the geometric methods of Balseiro (Arch Ration Mech Anal 214:453–501, 2014) and Balseiro and Garcia-Naranjo (Arch Ration Mech Anal 205(1):267–310, 2012). We illustrate the theory with classical examples describing the dynamics of solids of revolution rolling without sliding on a plane. In these cases, using the existence of two conserved quantities we obtain, by means of gauge transformations and symmetry reduction, genuine Poisson brackets describing the reduced dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. If \(\pi \) is a bivector field on \({\mathcal {M}}\), the Schouten bracket \([\pi ,\pi ]\) is a 3-vector field such that, for \(f,g,h\in C^\infty ({\mathcal {M}})\), \(\tfrac{1}{2}[\pi ,\pi ](\text {d}f,\text {d}g,\text {d}h) = \text {cyclic} [\, \{f,\{g,h\}\}\, ] \), where \(\{\cdot ,\cdot \}\) is the bracket associated with \(\pi \) (and where “\(\text {cyclic} [\, \cdot \, ]\)” denotes the cyclic sum), see Marsden and Ratiu (2002).

  2. We are denoting by \(\mathbf{X}, \partial _{a_1}, \partial _{a_2}\) vector fields on Q and also vector fields on \({\mathcal {M}}\). When it is clear from the context, we will also denote by \(\varvec{\lambda }\) and \(\epsilon ^1, \epsilon ^2\) the 1-forms on \({\mathcal {M}}\) that are the pull backs of the corresponding 1-forms on Q.

References

  • Balseiro, P.: The Jacobiator of nonholonomic systems and the geometry of reduced nonholonomic brackets. Arch. Ration. Mech. Anal. 214, 453–501 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Balseiro, P., Fernandez, O.E.: Reduction of nonholonomic systems in two stages and Hamiltonization. Nonlinearity 28, 2873 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Balseiro, P., Garcia-Naranjo, L.: Gauge transformations, twisted Poisson brackets and hamiltonization of nonholonomic systems. Arch. Ration. Mech. Anal. 205(1), 267–310 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Balseiro, P., Sansonetto, N.: A geometric characterization of certain first integrals for nonholonomic systems with symmetries. SIGMA12 018 (2016)

  • Balseiro, P., Yapu-Quispe, L.P.: Work in progress (2017)

  • Bates, L., Cushman, R.: Global Aspects of Classical Integrable Systems, 2nd edn. Birkhauser, Boston (2015)

  • Bates, L., Graumann, H., MacDonell, C.: Examples of gauge conservation laws in nonholonomic systems. Rep. Math. Phys. 37, 295–308 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Bates, L., Sniatycki, J.: Nonholonomic reduction. Rep. Math. Phys. 32(1), 99–115 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Bates, L., Sniatycki, J.: Not quite hamiltonian reduction. Rep. Math. Phys. 76(1), 41–52 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Bizyaev, I.A., Tsiganov, A.V.: On the Routh sphere problem. J. Phys. A: Math. Theor. 46(8), 085202 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Bloch, A.M.: Nonholonomic Mechanics and Control. Springer, New York (2003)

    Book  Google Scholar 

  • Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., Murray, R.M.: Nonholonomic mechanical systems with symmetry. Arch. Ration. Mech. Anal. 136, 21–99 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Bolsinov, A.V., Kilin, A.A., Kazakov, A.O.: Topological monodromy as an obstruction to Hamiltonization of nonholonomic systems: pro or contra? J. Geom. Phys. 87, 61–75 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Borisov, A.V., Mamaev, I.S.: Chaplygin’s ball rolling problem is Hamiltonian. Math. Notes 70, 793–795 (2001)

    MathSciNet  MATH  Google Scholar 

  • Borisov, A.V., Mamaev, I.S.: The rolling motion of a rigid body on a plane and a sphere. Hierarchy of dynamics. Regul. Chaotic Dyn. 7(2), 177–200 (2002)

  • Borisov, A.V., Mamaev, I.S.: Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems. Regul. Chaotic Dyn. 13, 443–490 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Borisov, A.V., Mamaev, I.S., Tsiganov, A.V.: Non-holonomic dynamics and Poisson geometry. Russ. Math. Surv. 69(3), 481–538 (2014)

    Article  MATH  Google Scholar 

  • Cantrijn, F., De León, M., Martín de Diego, D.: On almost-Poisson structures in nonholonomic mechanics. Nonlinearity 12(3), 721 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Chaplygin, S.A.: On the theory of the motion of nonholonomic systems. The reducing-multiplier Theorem. Regul. Chaotic Dyn., 13, 369–376 (2008); Translated from Matematicheskiĭ sbornik (Russian) 28 (1911), by A. V. Getling

  • Crampin, M., Mestdag, T.: The Cartan form for constrained Lagrangian systems and the nonholonomic Noether theorem. Int. J. Geom. Methods Mod. Phys. 8, 897–923 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Cushman, R.: Routh’s sphere. Rep. Math. Phys. 42(1–2), 47–70 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Cushman, R., Duistermaat, H., Sniatycki, J.: Geometry of Nonholonomically Constrained Systems, Advance Series in Nonlinear Dynamics, vol. 26. World Scientific, Singapore (2010)

    MATH  Google Scholar 

  • Duistermaat, H.: Chapligyns Sphere. arXiv:math.DS/0409019 (2000)

  • Ehlers, K., Koiller, J., Montgomery, R., Rios, P.M.: Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization. The Breath of Symplectic and Poisson Geometry. Progress in Mathematics, vol. 232, pp. 75–120. Birkhäuser, Boston (2005)

    Chapter  Google Scholar 

  • Fassò, F., Giacobbe, A., Sansonetto, N.: Gauge conservation laws and the momentum equation in nonholonomic mechanics. Rep. Math. Phys. 62, 345–367 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Fassò, F., Giacobbe, A., Sansonetto, N.: On the number of weakly Noetherian constants of motions of nonholonomic systems. J. Geom. Mech. 1, 389–416 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Fassò, F., Sansonetto, N.: Conservation of ‘moving’ energy in nonholonomic systems with affine constraints and integrability of spheres on rotating surfaces. J. Nonlinear Sci. 26(2), 519–544 (2016)

  • Fedorov, YuN, Jovanović, B.: Nonholonomic LR systems as generalized Chaplygin systems with an invariant measure and flows on homogeneous spaces. J. Nonlinear Sci. 14, 341–381 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Fedorov, YuN, Kozlov, V.V.: Various aspects of \(n\)-dimensional rigid body dynamics. Dynamical Systems in Classical Mechanics. American Mathematical Society Translations: Series 2, vol. 168, pp. 141–171. American Mathematical Society, Providence (1995)

    Google Scholar 

  • Fernandez, O., Mestdag, T., Bloch, A.M.: A generalization of Chaplygin’s reducibility theorem. Regul. Chaotic Dyn. 14, 635–655 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • García-Naranjo, L.C.: Reduction of almost Poisson brackets and Hamiltonization of the Chaplygin sphere. Discret. Cont. Dyn. Syst. Series S 3, 37–60 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • García-Naranjo, L.C., Montaldi, J.: Gauge momenta as Casimir functions of nonholonomic systems (2016) (preprint)

  • Ibort, A., de León, M., Marrero, J.C., Martín de Diego, D.: Dirac brackets in constrained dynamics. Fortschr. Phys. 47(5), 459–492 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Jovanović, B.: Hamiltonization and integrability of the Chaplygin sphere in \({\mathbb{R}}^n\). J. Nonlinear Sci. 20(5), 569–593 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Jovanović, B.: Symmetries of line bundles and Noether theorem for time-dependent nonholonomic systems (2016) (preprint)

  • Marle, C.M.: Reduction of constrained mechanical systems and stability of relative equilibria. Commun. Math. Phys. 174, 295–318 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Marle, C.M.: Various approaches to conservative and nonconservative nonholonomic systems. Rep. Math. Phys. 42, 211–229 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Marsden, J.E., Koon, W.S.: The Poisson reduction of nonholonomic mechanical systems. Rep. Math. Phys. 42, 101–134 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Marsden, J.E., Ratiu, T.: Introduction to Mechanics and Symmetry, Volume 17, Texts in Applied Mathematics, 2nd edn. Springer, New York (2002)

  • Ohsawa, T., Fernandez, O., Bloch, A.M., Zenkov, D.: Nonholonomic Hamilton–Jacobi theory via Chaplygin Hamiltonization. J. Geom. Phys. 61, 1263–1291 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Ramos, A.: Poisson structures for reduced non-holonomic systems. J. Phys. A: Math. Gen. 37(17), 4821 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Routh, E.: A Treatise on the Dynamics of a System of Rigid Bodies, Parts I and II. Dover, New York (1960)

    Google Scholar 

  • Ševera, P., Weinstein, A.: Poisson Geometry with a 3-form Background. Progr. Theor. Phys. 144, 145–154 (2001)

    MathSciNet  MATH  Google Scholar 

  • Sniatycki, J.: Nonholonomic noether theorem and reduction of symmetries. Rep. Math. Phys. 42, 5–23 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • van der Schaft, A.J., Maschke, B.M.: On the Hamiltonian formulation of nonholonomic mechanical systems. Rep. on Math. Phys. 34, 225–233 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Zenkov, D.V.: Linear conservation laws of nonholonomic systems with symmetry. Disc. Contin. Dyn. Syst., 967–976 (2003)

Download references

Acknowledgements

I thank CNPq (Brazil) for supporting this project. I am grateful to Richard Cushman, Jedrzej Sniatycki, Larry Bates, Nicola Sansonetto and Alessia Mandini for stimulating conversations. I thank Dmitry Zenkov for the invitation to the CMS meeting in Edmonton in July 2016, where part of this work was presented. I am especially indebted to Luis Garcia-Naranjo for inspiring discussions, particularly concerning the symmetry group for the Routh sphere (Sect. 4.1) ; his joint work with García-Naranjo and Montaldi (2016) contains results related to ours, but independently obtained, where the horizontal gauge momenta become Casimirs of an alternative reduced bracket.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Balseiro.

Additional information

Communicated by Anthony Bloch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balseiro, P. Hamiltonization of Solids of Revolution Through Reduction. J Nonlinear Sci 27, 2001–2035 (2017). https://doi.org/10.1007/s00332-017-9394-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-017-9394-1

Keywords

Mathematics Subject Classification

Navigation