Skip to main content
Log in

Conservation of energy and momenta in nonholonomic systems with affine constraints

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

We characterize the conditions for the conservation of the energy and of the components of the momentum maps of lifted actions, and of their “gauge-like” generalizations, in time-independent nonholonomic mechanical systems with affine constraints. These conditions involve geometrical and mechanical properties of the system, and are codified in the so-called reaction-annihilator distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, R. and Marsden, J.E., Foundations of Mechanics, 2nd ed., rev. and enl., Reading, Mass.: Benjamin/Cummings, 1978.

    MATH  Google Scholar 

  2. Agostinelli, C., Nuova forma sintetica delle equazioni del moto di un sistema anolonomo ed esistenza di un integrale lineare nelle velocita lagrangiane, Boll. Un. Mat. Ital. (3), 1956, vol. 11, pp. 1–9.

    MathSciNet  MATH  Google Scholar 

  3. Arnol’d, V. I., Mathematical Methods of Classical Mechanics, 2nd ed., Grad. Texts in Math., vol. 60, New York: Springer, 1989.

    Book  MATH  Google Scholar 

  4. Bates, L., Graumann, H., and MacDonnell, C., Examples of Gauge Conservation Laws in Nonholonomic Systems, Rep. Math. Phys., 1996, vol. 37, no. 3, pp. 295–308.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bates, L. M. and Nester, J. M., On D’Alembert’s Principle, Commun. Math., 2011, vol. 19, no. 1, pp. 57–72.

    MathSciNet  MATH  Google Scholar 

  6. Bates, L. and Śniatycki, J., Nonholonomic Reduction, Rep. Math. Phys., 1993, vol. 32, no. 1, pp. 99–115.

    Article  MathSciNet  MATH  Google Scholar 

  7. Benenti, S., A “user-friendly” Approach to the Dynamical Equations of Non-Holonomic Systems, SIGMA Symmetry Integrability Geom. Methods Appl., 2007, vol. 3, Paper 036, 33 pp.

  8. Bloch, A. M., Krishnaprasad, P. S., Marsden, J.E., and Murray, R. M., Nonholonomic Mechanical Systems with Symmetry, Arch. Rational Mech. Anal., 1996, vol. 136, no. 1, pp. 21–99.

    Article  MathSciNet  MATH  Google Scholar 

  9. Borisov, A. V., Mamaev, I. S., and Bizyaev, I. A., The Jacobi Integral in Nonholonomic Mechanics, Regul. Chaotic Dyn., 2015, vol. 20, no. 3, pp. 383–400.

    Article  MathSciNet  Google Scholar 

  10. Borisov, A. V., Mamaev, I. S., and Kilin, A.A., Rolling of a Ball on a Surface: New Integrals and Hierarchy of Dynamics, Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 201–219.

    Article  MathSciNet  MATH  Google Scholar 

  11. Borisov, A.V. and Mamaev, I. S., Conservation Laws, Hierarchy of Dynamics and Explicit Integration of Nonholonomic Systems, Regul. Chaotic Dyn., 2008, vol. 13, no. 5, pp. 443–490.

    Article  MathSciNet  MATH  Google Scholar 

  12. Cantrijn, F., de León, M., Marrero, J.C., and de Diego, D. M., Reduction of Nonholonomic Mechanical Systems with Symmetries, Rep. Math. Phys., 1998, vol. 42, nos. 1–2, pp. 25–45.

    Article  MathSciNet  MATH  Google Scholar 

  13. Cortés Monforte, J., Geometric, Control and Numerical Aspects of Nonholonomic Systems, Lecture Notes in Math., vol. 1793, Berlin: Springer, 2002.

    Book  MATH  Google Scholar 

  14. Crampin, M. and Mestdag, T., The Cartan Form for Constrained Lagrangian Systems and the Nonholonomic Noether Theorem, Int. J. Geom. Methods Mod. Phys., 2011, vol. 8, no. 4, pp. 897–923.

    Article  MathSciNet  MATH  Google Scholar 

  15. Cushman, R., Duistermaat, H., and Śniatycki, J., Geometry of Nonholonomically Constrained Systems, Adv. Ser. Nonlinear Dynam., vol. 26, Hackensack,N.J.: World Sci., 2010.

    MATH  Google Scholar 

  16. Fassò, F., Giacobbe, A., and Sansonetto, N., Gauge Conservation Laws and the Momentum Equation in Nonholonomic Mechanics, Rep. Math. Phys., 2008, vol. 62, no. 3, pp. 345–367.

    Article  MathSciNet  Google Scholar 

  17. Fassò, F., Giacobbe, A., and Sansonetto, N., On the Number of Weakly Noetherian Constants of Motion of Nonholonomic Systems, J. Geom. Mech., 2009, vol. 1, no. 4, pp. 389–416.

    Article  MathSciNet  MATH  Google Scholar 

  18. Fassò, F., Giacobbe, A., and Sansonetto, N., Linear Weakly Noetherian Constants of Motion Are Horizontal Gauge Momenta, J. Geom. Mech., 2012, vol. 4, no. 2, pp. 129–136.

    Article  MathSciNet  MATH  Google Scholar 

  19. Fassò, F., Ramos, A., and Sansonetto, N., The Reaction-Annihilator Distribution and the Nonholonomic Noether Theorem for Lifted Actions, Regul. Chaotic Dyn., 2007, vol. 12, no. 6, pp. 579–588.

    Article  MathSciNet  MATH  Google Scholar 

  20. Fassò, F. and Sansonetto, N., An Elemental Overview of the Nonholonomic Noether Theorem, Int. J. Geom. Methods Mod. Phys., 2009, vol. 6, no. 8, pp. 1343–1355.

    Article  MathSciNet  MATH  Google Scholar 

  21. Fassò, F. and Sansonetto, N., Conservation of “Moving” Energy in Nonholonomic Systems with Affine Constraints and Integrability of Spheres on Rotating Surfaces: Preprint, http://arxiv.org/abs/1503.06661 (2015).

    Google Scholar 

  22. Gorni, G. and Zampieri, G., Time Reversibility and Energy Conservation for Lagrangian Systems with Nonlinear Nonholonomic Constraints, Rep. Math. Phys., 2000, vol. 45, no. 2, pp. 217–227.

    Article  MathSciNet  MATH  Google Scholar 

  23. Jotz, M. and Ratiu, T. S., Dirac Structures, Nonholonomic Systems and Reduction, Rep. Math. Phys., 2012, vol. 69, no. 1, pp. 5–56.

    Article  MathSciNet  MATH  Google Scholar 

  24. Kobayashi, M.H. and Oliva, W. O., A Note on the Conservation of Energy and Volume in the Setting of Nonholonomic Mechanical Systems, Qual. Theory Dyn. Syst., 2004, vol. 4, no. 2, pp. 383–411.

    Article  MathSciNet  Google Scholar 

  25. Marle, Ch.-M., Reduction of Constrained Mechanical Systems and Stability of Relative Equilibria, Comm. Math. Phys., 1995, vol. 174, no. 2, pp. 295–318.

    Article  MathSciNet  MATH  Google Scholar 

  26. Marle, Ch.-M., On Symmetries and Constants of Motion in Hamiltonian Systems with Nonholonomic Constraints, in Classical and Quantum Integrability (Warsaw, 2001), Banach Center Publ., vol. 59, Warsaw: Polish Acad. Sci., 2003, pp. 223–242.

    Chapter  Google Scholar 

  27. Massa, E. and Pagani, E., Classical Dynamics of Nonholonomic Systems: A Geometric Approach, Ann. Inst. H. Poincaré Phys. Theor., 1991, vol. 55, no. 1, pp. 511–544.

    MathSciNet  MATH  Google Scholar 

  28. Neimark, Ju. I. and Fufaev, N.A., Dynamics of Nonholonomic Systems, Trans. Math. Monogr., vol. 33, Providence,R.I.: AMS, 1972.

    MATH  Google Scholar 

  29. Pars, L.A., A Treatise on Analytical Dynamics, London: Heinemanin, 1968.

    Google Scholar 

  30. Routh, E. J., The Advanced Part of a Treatise on the Dynamics of a System of Rigid Bodies: Being Part II of a Treatise on the Whole Subject, 6th ed., New York: Dover, 1955.

    Google Scholar 

  31. Śniatycki, J., Nonholonomic Noether Theorem and Reduction of Symmetries, Rep. Math. Phys., 1998, vol. 42, nos. 1–2, pp. 5–23.

    Article  MathSciNet  MATH  Google Scholar 

  32. Terra, G. and Kobayashi, M. H., On Classical Mechanical Systems with Non-Linear Constraints, J. Geom. Phys., 2004, vol. 49, nos. 3–4, pp. 385–417.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Fassò.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fassò, F., Sansonetto, N. Conservation of energy and momenta in nonholonomic systems with affine constraints. Regul. Chaot. Dyn. 20, 449–462 (2015). https://doi.org/10.1134/S1560354715040048

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354715040048

MSC2010 numbers

Keywords

Navigation