Skip to main content
Log in

Transonic Shocks for the Full Compressible Euler System in a General Two-Dimensional De Laval Nozzle

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper, we study the transonic shock problem for the full compressible Euler system in a general two-dimensional de Laval nozzle as proposed in Courant and Friedrichs (Supersonic flow and shock waves, Interscience, New York, 1948): given the appropriately large exit pressure p e(x), if the upstream flow is still supersonic behind the throat of the nozzle, then at a certain place in the diverging part of the nozzle, a shock front intervenes and the gas is compressed and slowed down to subsonic speed so that the position and the strength of the shock front are automatically adjusted such that the end pressure at the exit becomes p e(x). We solve this problem completely for a general class of de Laval nozzles whose divergent parts are small and arbitrary perturbations of divergent angular domains for the full steady compressible Euler system. The problem can be reduced to solve a nonlinear free boundary value problem for a mixed hyperbolic–elliptic system. One of the key ingredients in the analysis is to solve a nonlinear free boundary value problem in a weighted Hölder space with low regularities for a second order quasilinear elliptic equation with a free parameter (the position of the shock curve at one wall of the nozzle) and non-local terms involving the trace on the shock of the first order derivatives of the unknown function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azzam A.: On Dirichlet’s problem for elliptic equations in sectionally smooth n-dimensional domains. SIAM J. Math. Anal. 11, 248–253 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Azzam A.: Smoothness properties of mixed boundary value problems for elliptic equations in sectionally smooth n-dimensional domains. Ann. Polon. Math. 40, 81–93 (1981)

    MathSciNet  MATH  Google Scholar 

  3. Bers, L.: Mathematical Aspects of Subsonic and Transonic Gas Dynamics. Wiley, New York; Chapman & Hall Ltd., London, 1958

  4. Canic, S., Keyfitz, B.L., Lieberman, G.M.: A proof of existence of perturbed steady transonic shocks via a free boundary problem. Commun. Pure Appl. Math. LIII, 484–511 (2000)

    Google Scholar 

  5. Chen G., Chen J., Song K.: Transonic nozzle flows and free boundary problems for the full Euler equations. J. Differ. Equ. 229, 92–120 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen G., Chen J., Feldman M.: Transonic shocks and free boundary problems for the full Euler equations in infinite nozzles. J. Math. Pures. Appl. 88, 191–218 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Chen S.: Stability on transonic shock fronts in two-dimensional Euler systems. Trans. Am. Math. Soc. 357, 287–308 (2005)

    Article  MATH  Google Scholar 

  8. Chen S.: Transonic shocks in 3-D compressible flow passing a duct with a general section for Euler systems. Trans. Am. Math. Soc. 360, 5265–5289 (2008)

    Article  MATH  Google Scholar 

  9. Courant, R., Friedrichs, K.O.: Supersonic Flow and Shock Waves. Interscience, New York, 1948

  10. Elling, V., Liu, T.: Supersonic flow onto a solid wedge. Commun. Pure Appl. Math. LXI, 1347–1448 (2008)

    Google Scholar 

  11. Embid P., Goodman J., Majda A.: Multiple steady states for 1-D transonic flow. SIAM J. Sci. Stat. Comput. 5, 21–41 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gilbarg D., Hörmander L.: Intermediate Schauder estimates. Arch. Rational Mech. Anal. 74, 297–318 (1980)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Gilbarg, D., Tudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Grund-lehren der Mathematischen Wissenschaften, 224. Springer, Berlin-New York, 1998

  14. Glaz H.M., Liu T.-P.: The asymptotic analysis of wave interactions and numerical calculations of transonic nozzle flow. Adv. Appl. Math. 5, 111–146 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. John F.: Formation of singularities in one-dimensional nonlinear wave propagation. Commun. Pure Appl. Math. 27, 377–405 (1974)

    Article  MATH  Google Scholar 

  16. A.G. , A.G. : Boundary-Value Problems for Transonic Flow. Wiley, New York (2002)

    Google Scholar 

  17. Li J., Xin Z., Yin H.: On transonic shocks in a nozzle with variable end pressures. Commun. Math. Phys. 291, 111–150 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Li J., Xin Z., Yin H.: A free boundary value problem for the full steady compressible Euler system and two dimensional transonic shocks in a large variable nozzle. Math. Res. Lett. 16, 777–786 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Li, T., Zheng, S., Tan, Y., Shen, W.: Boundary Value Problems with Equivalued Surface and Resistivity Well-Logging. Pitman Research Notes in Mathematics Series, 382. Longman, Harlow, 1998

  20. Lieberman G.M.: Mixed boundary value problems for elliptic and parabolic differential equation of second order. J. Math. Anal. Appl. 113, 422–440 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu L., Yuan H.: Stability of cylindrical transonic shocks for the two-dimensional steady compressible Euler system. J. Hyperbolic Differ. Equ. 5, 347–379 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu T.: Nonlinear stability and instability of transonic flows through a nozzle. Commun. Math. Phys. 83, 243–260 (1982)

    Article  ADS  MATH  Google Scholar 

  23. Liu T.: Transonic gas flow in a duct of varying area. Arch. Rational Mech. Anal. 80, 1–18 (1982)

    Article  MATH  Google Scholar 

  24. Morawetz C.S.: Potential theory for regular and Mach reflection of a shock at a wedge. Commun. Pure Appl. Math. 47, 593–624 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wagner D.H.: Equivalence of the Euler and Lagrangian equations of gas dynamics for weak solutions. J. Differ. Equ. 68, 118–136 (1987)

    Article  MATH  Google Scholar 

  26. Wen, S.: Multi-Dimensional Conservation Laws and a Transonic Shock Problem. Master philosophy thesis of Chinese University of Hong Kong, 2009

  27. Xin Z., Yan W., Yin H.: Transonic shock problem for the Euler system in a nozzle. Arch. Rational Mech. Anal. 194, 1–47 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Xin, Z., Yin, H.: Transonic shock in a nozzle I, 2-D case. Commun. Pure Appl. Math. LVIII, 999–1050 (2005)

    Google Scholar 

  29. Xin Z., Yin H.: 3-Dimensional transonic shock in a nozzle. Pac. J. Math. 236, 139–193 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xin Z., Yin H.: Transonic shock in a curved nozzle, 2-D and 3-D complete Euler systems. J. Differ. Equ. 245, 1014–1085 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Xu G., Yin H.: Global transonic conic shock wave for the symmetrically perturbed supersonic flow past a cone. J. Differ. Equ. 245, 3389–3432 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xu G., Yin H.: Global multidimensional transonic conic shock wave for the perturbed supersonic flow past a cone. SIAM J. Math. Anal. 41, 178–218 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yin H., Zhou C.: On global transonic shocks for the steady supersonic Euler flows past sharp 2-D wedges. J. Differ. Equ. 246, 4466–4496 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yuan H.: On transonic shocks in two-dimensional variable-area ducts for steady Euler system. SIAM J. Math. Anal. 38, 1343–1370 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zheng Y.: Two-dimensional regular shock reflection for the pressure gradient system of conservation laws. Acta Math. Appl. Sin. Engl. Ser. 22, 177–210 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhouping Xin.

Additional information

Communicated by C. Dafermos

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Xin, Z. & Yin, H. Transonic Shocks for the Full Compressible Euler System in a General Two-Dimensional De Laval Nozzle. Arch Rational Mech Anal 207, 533–581 (2013). https://doi.org/10.1007/s00205-012-0580-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-012-0580-x

Keywords

Navigation