Skip to main content
Log in

Transonic Shock Solutions to the Euler System in Divergent-Convergent Nozzles

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

In this paper, we study the transonic shock solutions to the steady Euler system in a quasi-one-dimensional divergent-convergent nozzle. For a given physical supersonic inflow at the entrance, we obtain exactly two non-isentropic transonic shock solutions for the exit pressure lying in a suitable range. In addition, we establish the monotonicity between the location of the transonic shock and the pressure downstream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Bethe H A. On the theory of shock waves for an arbitrary equation of state//Classic papers in shock compression science. New York: Springer, 1998: 421–492

    Chapter  Google Scholar 

  2. Liu T P, Nonlinear satbility and instability of transonic gas flow through a nozzle. Comm Math Phys, 1982, 83: 243–260

    Article  MathSciNet  Google Scholar 

  3. Chen C, Xie C J, Three dimensional steady subsonic Euler flows in bounded nozzles. J Differential Equations, 2014, 256: 3684–3708

    Article  MathSciNet  Google Scholar 

  4. Chen G Q, Huang F M, Wang T Y, et al, Steady Euler flows with large vorticity and characteristic discontinuities in arbitrary infinitely long nozzles. Adv Math, 2019, 346: 946–1008

    Article  MathSciNet  Google Scholar 

  5. Chen S X, Xin Z P, Yin H C, Global shock waves for the supersonic flow past a perturbed cone. Comm Math Phys, 2002, 228: 47–84

    Article  MathSciNet  Google Scholar 

  6. Du L L, Xie C J, Xin Z P, Steay subsonic ideal flows through an infinitely long nozzle with large vorticity. Comm Math Phys, 2014, 28: 327–354

    Article  Google Scholar 

  7. Wang C P, Xin Z P, Regular subsonic-sonic flows in general nozzles. Adv Math, 2021, 380: 107578

    Article  MathSciNet  Google Scholar 

  8. Xie C J, Xin Z P, Global subsonic and subsonic-sonic flows through infinitely long nozzles. Indiana Univ Math J, 2007, 56: 2991–3023

    Article  MathSciNet  Google Scholar 

  9. Courant R, Friedrichs K O. Supersonic flow and shock waves. New York: Interscience Publishers Inc, 1948

    MATH  Google Scholar 

  10. Chen S X, Compressible flow and transonic shock in a diverging nozzle. Comm Math Phys, 2009, 289: 75–106

    Article  MathSciNet  Google Scholar 

  11. Li J, Xin Z P, Yin H C, On transonic shocks in a nozzle with variable end pressures. Comm Math Phys, 2009, 291: 111–150

    Article  MathSciNet  Google Scholar 

  12. Xin Z P, Yin H C, Transonic shock in a nozzle I: two dimensional case. Comm Pure Appl Math, 2005, 58: 999–1050

    Article  MathSciNet  Google Scholar 

  13. Xin Z P, Yin H C, The transonic shock in a nozzle, 2-D and 3-D complete Euler systems. J Differential Equations, 2008, 245: 1014–1085

    Article  MathSciNet  Google Scholar 

  14. Bae M, Feldman M, Transonic shocks in multidimensional divergent nozzles. Arch Ration Mech Anal, 2011, 201: 777–840

    Article  MathSciNet  Google Scholar 

  15. Chen G Q, Feldman M, Existence and stability of multidimensional transonic flows through an infinite nozzle of arbitrary cross-sections. Arch Ration Mech Anal, 2007, 184: 185–242

    Article  MathSciNet  Google Scholar 

  16. Xie F, Wang C P, Transonic shock wave in an infinite nozzle asymptotically converging to a cylinder. J Differential Equations, 2007, 242: 86–120

    Article  MathSciNet  Google Scholar 

  17. Chen S X, Stability of transonic shock fronts in two-dimensional Euler systems. Trans Am Math Soc, 2005, 357: 287–308

    Article  MathSciNet  Google Scholar 

  18. Chen G Q, Fang B X, Stability of transonic shocks in steady supersonic flow past multidimensional wedges. Adv Math, 2017, 314: 493–539

    Article  MathSciNet  Google Scholar 

  19. Liu T P, Nonlinear resonance for quasilinear hyperbolic equation. J Math Phys, 1987, 28: 2593–2602

    Article  MathSciNet  Google Scholar 

  20. Rauch J, Xie C J, Xin Z P, Global stability of transonic shock solutions in quasi-onedimensional nozzles. J Math Pures Appl, 2010, 99: 395–408

    Article  Google Scholar 

  21. Chen S X, Transonic shocks in 3-D compressible flow passing a duct with a general section for Euler systems. Trans Amer Math Soc, 2008, 360: 5265–5289

    Article  MathSciNet  Google Scholar 

  22. Chen S X, Yuan H R, Transonic shocks in compressible flow passing a duct for three-dimensional Euler system. Arch Ration Mech Anal, 2008, 187: 523–556

    Article  MathSciNet  Google Scholar 

  23. Xin Z P, Yan W, Yin H C, Transonic shock problem for the Euler system in a nozzle. Arch Ration Mech Anal, 2009, 194: 1–47

    Article  MathSciNet  Google Scholar 

  24. Yuan H R, On transonic shocks in two-dimensional variable-area ducts for steady Euler system. SIAM J Math Anal, 2006, 38: 1343–1370

    Article  MathSciNet  Google Scholar 

  25. Morawetz C S, On the non-existence of continuous transonic flows past profiles III. Commun Pure Appl Math, 1958, 11: 129–144

    Article  MathSciNet  Google Scholar 

  26. Wang C P, Xin Z P, Smooth transonic flows of meyer type in de Laval nozzles. Arch Ration Mech Anal, 2019, 232: 1597–1647

    Article  MathSciNet  Google Scholar 

  27. Luo T, Xin Z P, Transonic shock solutions for a system of Euler-Poisson equations. Comm Math Sci, 2012, 10: 419–462

    Article  MathSciNet  Google Scholar 

  28. Luo T, Rauch J, Xie C J, Xin Z P, Stability of transonic shock solutions for onedimensional Euler-Poisson equations. Arch Rat Mech Anal, 2011, 202: 787–827

    Article  Google Scholar 

  29. Duan B, Luo Z, Xiao J J, Transonic shock solutions to the Euler-Poisson system in quasi-one-dimensional nozzles. Commun Math Sci, 2016, 14: 1023–1047

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Luo.

Additional information

The research of Ben Duan is partially supported by NSFC (11871133, 12171498). The research of Zhen Luo is partially supported by NSFC (11971402, 12171401) and the NSF of Fujian province, China (2020J01029).

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, B., Lan, A. & Luo, Z. Transonic Shock Solutions to the Euler System in Divergent-Convergent Nozzles. Acta Math Sci 42, 1536–1546 (2022). https://doi.org/10.1007/s10473-022-0414-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-022-0414-3

Key words

2010 MR Subject Classification

Navigation