Skip to main content

Advertisement

Log in

Changes in the expression of genes involved in the ovarian function of rats caused by daily exposure to 3-methylcholanthrene and their prevention by α-naphthoflavone

  • Reproductive Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Daily exposure to low doses of 3-methylcholanthrene (3MC) during the pubertal period in rats disrupts both follicular growth and ovulation. Thus, to provide new insights into the toxicity mechanism of 3MC in the ovary, here we investigated the effect of daily exposure to 3MC on selected ovarian genes, the role of the aryl hydrocarbon receptor (AhR) and the level of epigenetic remodeling of histone post-transcriptional modifications. Immature rats were daily injected with 3MC (0.1 or 1 mg/kg) and mRNA expression of genes involved in different ovarian processes were evaluated. Of the 29 genes studied, 18 were up-regulated, five were down-regulated and six were not altered. To assess whether AhR was involved in these changes, we used the chromatin immunoprecipitation assay. 3MC increased AhR binding to promoter regions of genes involved in Notch signaling (Hes1, Jag1), activation of primordial follicles (Cdk2), cell adhesion (Icam1), stress and tumor progression (Dnajb6), apoptosis (Bax, Caspase-9) and expression of growth and transcription factors (Igf2, Sp1). Studying the trimethylation and acetylation of histone 3 (H3K4me3 and H3K9Ac, respectively) of these genes, we found that 3MC increased H3K4me3 in Cyp1a1, Jag1, Dnajb6, Igf2, Notch2, Adamts1, Bax and Caspase-9, and H3K9Ac in Cyp1a1, Jag1, Cdk2, Dnajb6, Igf2, Icam1, and Sp1. Co-treatment with α-naphthoflavone (αNF), a specific antagonist of AhR, prevented almost every 3MC-induced changes. Despite the low dose used in these experiments, daily exposure to 3MC induced changes in both gene expression and epigenomic remodeling, which may lead to premature ovarian failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alam MS, Maekawa Y, Kitamura A, Tanigaki K, Yoshimoto T, Kishihara K, Yasutomo K (2010) Notch signaling drives IL-22 secretion in CD4+ T cells by stimulating the aryl hydrocarbon receptor. Proc Natl Acad Sci USA 107:5943–5948. doi:10.1073/pnas.0911755107

    Article  PubMed  PubMed Central  Google Scholar 

  • Baba T, Mimura J, Nakamura N, Harada N, Yamamoto M, Morohashi K, Fujii-Kuriyama Y (2005) Intrinsic function of the aryl hydrocarbon (dioxin) receptor as a key factor in female reproduction. Mol Cell Biol 25:10040–10051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldridge MG, Hutz RJ (2007) Autoradiographic localization of aromatic hydrocarbon receptor (AHR) in rhesus monkey ovary. Am J Primatol 69:681–691

    Article  CAS  PubMed  Google Scholar 

  • Barnett KR, Tomic D, Gupta RK, Babus JK, Roby KF, Terranova PF, Flaws JA (2007a) The aryl hydrocarbon receptor is required for normal gonadotropin responsiveness in the mouse ovary. Toxicol Appl Pharmacol 223:66–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnett KR, Tomic D, Gupta RK, Miller KP, Meachum S, Paulose T, Flaws JA (2007b) The aryl hydrocarbon receptor affects mouse ovarian follicle growth via mechanisms involving estradiol regulation and responsiveness. Biol Reprod 76:1062–1070

    Article  CAS  PubMed  Google Scholar 

  • Beedanagari SR, Taylor RT, Bui P, Wang F, Nickerson DW, Hankinson O (2010) Role of epigenetic mechanisms in differential regulation of the dioxin-inducible human CYP1A1 and CYP1B1 genes. Mol Pharmacol 78:608–616. doi:10.1124/mol.110.064899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benedict JC, Lin TM, Loeffler IK, Peterson RE, Flaws JA (2000) Physiological role of the aryl hydrocarbon receptor in mouse ovary development. Toxicol Sci 56:382–388

    Article  CAS  PubMed  Google Scholar 

  • Benedict JC, Miller KP, Lin TM, Greenfeld C, Babus JK, Peterson RE, Flaws JA (2003) Aryl hydrocarbon receptor regulates growth, but not atresia, of mouse preantral and antral follicles. Biol Reprod 68:1511–1517

    Article  CAS  PubMed  Google Scholar 

  • Bonello N, Jasper MJ, Norman RJ (2004) Periovulatory expression of intercellular adhesion molecule-1 in the rat ovary. Biol Reprod 71:1384–1390

    Article  CAS  PubMed  Google Scholar 

  • Borman SM, Christian PJ, Sipes IG, Hoyer PB (2000) Ovotoxicity in female Fischer rats and B6 mice induced by low-dose exposure to three polycyclic aromatic hydrocarbons: comparison through calculation of an ovotoxic index. Toxicol Appl Pharmacol 167:191–198

    Article  CAS  PubMed  Google Scholar 

  • Brouwer-Visser J, Huang GS (2015) IGF2 signaling and regulation in cancer. Cytokine Growth Factor Rev 26:371–377. doi:10.1016/j.cytogfr.2015.01.002

    Article  CAS  PubMed  Google Scholar 

  • Cavalieri E, Roth R, Althoff J, Grandjean C, Patil K, Marsh S, Mclaughlin D (1978) Carcinogenicity and metabolic profiles of 3-methylcholanthrene oxygenated derivatives at the 1 and 2 positions. Chem Biol Interact 22:69–81

    Article  CAS  PubMed  Google Scholar 

  • Chaffin CL, Heimler I, Rawlins RG, Wimpee BA, Sommer C, Hutz RJ (1996) Estrogen receptor and aromatic hydrocarbon receptor in the primate ovary. Endocrine 5:315–321

    Article  CAS  PubMed  Google Scholar 

  • Davis BJ, Mccurdy EA, Miller BD, Lucier GW, Tritscher AM (2000) Ovarian tumors in rats induced by chronic 2,3,7,8-tetrachlorodibenzo-p-dioxin treatment. Cancer Res 60:5414–5419

    CAS  PubMed  Google Scholar 

  • Dere E, Lo R, Celius T, Matthews J, Zacharewski TR (2011) Integration of genome-wide computation DRE search, AhR ChIP-chip and gene expression analyses of TCDD-elicited responses in the mouse liver. BMC Genomics 12:365. doi:10.1186/1471-2164-12-365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan CY, Lee S, Cyr DM (2003) Mechanisms for regulation of Hsp70 function by Hsp40. Cell Stress Chaperones 8:309–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flesher JW, Horn J, Lehner AF (1998) Carcinogenicity of 1-hydroxy-3-methylcholanthrene and its electrophilic sulfate ester 1-sulfooxy-3-methylcholanthrene in Sprague–Dawley rats. Biochem Biophys Res Commun 243:30–35

    Article  CAS  PubMed  Google Scholar 

  • Freour T, Masson D, Mirallie S, Jean M, Bach K, Dejoie T, Barriere P (2008) Active smoking compromises IVF outcome and affects ovarian reserve. Reprod Biomed Online 16:96–102

    Article  PubMed  Google Scholar 

  • Fujii-Kuriyama Y, Mimura J (2005) Molecular mechanisms of AhR functions in the regulation of cytochrome P450 genes. Biochem Biophys Res Commun 338:311–317

    Article  CAS  PubMed  Google Scholar 

  • Ganesan S, Keating AF (2014) Impact of 7,12-dimethylbenz[a]anthracene exposure on connexin gap junction proteins in cultured rat ovaries. Toxicol Appl Pharmacol 274:209–214. doi:10.1016/j.taap.2013.11.008

    Article  CAS  PubMed  Google Scholar 

  • Groeneweg JW, Foster R, Growdon WB, Verheijen RH, Rueda BR (2014) Notch signaling in serous ovarian cancer. J Ovarian Res 7:95. doi:10.1186/s13048-014-0095-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Ha M, Ng DW, Li WH, Chen ZJ (2011) Coordinated histone modifications are associated with gene expression variation within and between species. Genome Res 21:590–598. doi:10.1101/gr.116467.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn ME (2002) Aryl hydrocarbon receptors: diversity and evolution. Chem Biol Interact 141:131–160

    Article  CAS  PubMed  Google Scholar 

  • Hasan A, Fischer B (2003) Epithelial cells in the oviduct and vagina and steroid-synthesizing cells in the rabbit ovary express AhR and ARNT. Anat Embryol (Berl) 207:9–18

    Article  CAS  Google Scholar 

  • Hernández-Ochoa I, Karman BN, Flaws JA (2009) The role of the aryl hydrocarbon receptor in the female reproductive system. Biochem Pharmacol 77:547–559. doi:10.1016/j.bcp.2008.09.037

    Article  PubMed  Google Scholar 

  • Hernández-Ochoa I, Barnett-Ringgold KR, Dehlinger SL, Gupta RK, Leslie TC, Roby KF, Flaws JA (2010) The ability of the aryl hydrocarbon receptor to regulate ovarian follicle growth and estradiol biosynthesis in mice depends on stage of sexual maturity. Biol Reprod 83:698–706. doi:10.1095/biolreprod.110.087015

    Article  PubMed  PubMed Central  Google Scholar 

  • Howe FS, Fischl H, Murray SC, Mellor J (2017) Is H3 K4me3 instructive for transcription activation? BioEssays 39:1–12. doi:10.1002/bies.201600095

    Article  CAS  PubMed  Google Scholar 

  • Huang B, Butler R, Miao Y, Dai Y, Wu W, Su W, Fujii-Kuriyama Y, Warner M, Gustafsson JÅ (2016) Dysregulation of Notch and ERα signaling in AhR-/- male mice. Proc Natl Acad Sci USA 113:11883–11888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter PJ, Swanson BJ, Haendel MA, Lyons GE, Cross JC (1999) Mrj encodes a DnaJ-related co-chaperone that is essential for murine placental development. Development 126:1247–1458

    CAS  PubMed  Google Scholar 

  • Jablonska O, Piasecka J, Ostrowska M, Sobocinska N, Wasowska B, Ciereszko RE (2011) The expression of the aryl hydrocarbon receptor in reproductive and neuroendocrine tissues during the estrous cycle in the pig. Anim Reprod Sci 126:221–228. doi:10.1016/j.anireprosci.2011.05.010

    Article  CAS  PubMed  Google Scholar 

  • Jung NK, Park JY, Park JH, Kim SY, Park JK, Chang WK, Lee HC, Kim SW, Chun SY (2010) Attenuation of cell cycle progression by 2,3,7,8-tetrachlorodibenzo-p-dioxin eliciting ovulatory blockade in gonadotropin-primed immature rats. Endocr J 57:863–871

    Article  CAS  PubMed  Google Scholar 

  • Khorram O, Garthwaite M, Golos T (2002) Uterine and ovarian aryl hydrocarbon receptor (AHR) and aryl hydrocarbon receptor nuclear translocator (ARNT) mRNA expression in benign and malignant gynaecological conditions. Mol Hum Reprod 8:75–80

    Article  CAS  PubMed  Google Scholar 

  • Ko CB, Kim SJ, Park C, Kim BR, Shin CH, Choi S, Chung SY, Noh JH, Jeun JH, Kim NS, Park R (2004) Benzo(a)pyrene-induced apoptotic death of mouse hepatoma Hepa1c1c7 cells via activation of intrinsic caspase cascade and mitochondrial dysfunction. Toxicology 199:35–46

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi A, Sogawa K, Fujii-Kuriyama Y (1996) Cooperative interaction between AhR.Arnt and Sp1 for the drug-inducible expression of CYP1A1 gene. J Biol Chem 271:12310–12316

    Article  CAS  PubMed  Google Scholar 

  • Lawrence RJ, Earley K, Pontes O, Silva M, Chen ZJ, Neves N, Viegas W, Pikaard CS (2004) A concerted DNA methylation/histone methylation switch regulates rRNA gene dosage control and nucleolar dominance. Mol Cell 13:599–609

    Article  CAS  PubMed  Google Scholar 

  • Livingstone C (2013) IGF2 and cancer. Endocr Relat Cancer 20:R321–R339. doi:10.1530/ERC-13-0231

    Article  CAS  PubMed  Google Scholar 

  • Lomniczi A, Wright H, Castellano JM, Sonmez K, Ojeda SR (2013) A system biology approach to identify regulatory pathways underlying the neuroendocrine control of female puberty in rats and nonhuman primates. Horm Behav 64:175–186. doi:10.1016/j.yhbeh.2012.09.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matikainen T, Perez GI, Jurisicova A, Pru JK, Schlezinger JJ, Ryu HY, Laine J, Sakai T, Korsmeyer SJ, Casper RF, Sherr DH, Tilly JL (2001) Aromatic hydrocarbon receptor-driven Bax gene expression is required for premature ovarian failure caused by biohazardous environmental chemicals. Nat Genet 28:355–360

    Article  CAS  PubMed  Google Scholar 

  • Matikainen TM, Moriyama T, Morita Y, Perez GI, Korsmeyer SJ, Sherr DH, Tilly JL (2002) Ligand activation of the aromatic hydrocarbon receptor transcription factor drives Bax-dependent apoptosis in developing fetal ovarian germ cells. Endocrinology 143:615–620

    Article  CAS  PubMed  Google Scholar 

  • Mattison DR (1980) Morphology of oocyte and follicle destruction by polycyclic aromatic hydrocarbons in mice. Toxicol Appl Pharmacol 53:249–259

    Article  CAS  PubMed  Google Scholar 

  • Mattison DR, Thorgeirsson SS (1979) Ovarian aryl hydrocarbon hydroxylase activity and primordial oocyte toxicity of polycyclic aromatic hydrocarbons in mice. Cancer Res 39:3471–3475

    CAS  PubMed  Google Scholar 

  • Meng E, Shevde LA, Samant RS (2016) Emerging roles and underlying molecular mechanisms of DNAJB6 in cancer. Oncotarget 7:53984–53996. doi:10.18632/oncotarget.9803

    PubMed  PubMed Central  Google Scholar 

  • Mitra A, Fillmore RA, Metge BJ, Rajesh M, Xi Y, King J, Ju J, Pannell L, Shevde LA, Samant RS (2008) Large isoform of MRJ (DNAJB6) reduces malignant activity of breast cancer. Breast Cancer Res 10:R22. doi:10.1186/bcr1874

    Article  PubMed  PubMed Central  Google Scholar 

  • Morgan DO (1997) Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 13:261–291

    Article  CAS  PubMed  Google Scholar 

  • Oesterling E, Toborek M, Hennig B (2008) Benzo[a]pyrene induces intercellular adhesion molecule-1 through a caveolae and aryl hydrocarbon receptor mediated pathway. Toxicol Appl Pharmacol 232:309–316. doi:10.1016/j.taap.2008.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olson KK, Townson DH (2000) Prolactin-induced expression of intercellular adhesion molecule-1 and the accumulation of monocytes/macrophages during regression of the rat corpus luteum. Biol Reprod 62:1571–1578

    Article  CAS  PubMed  Google Scholar 

  • Owens EO, Toborek M, Hennig B (2009) Flavonoids protect against intercellular adhesion molecule-1 induction by benzo[a]pyrene. Bull Environ Contam Toxicol 83:4–7. doi:10.1007/s00128-009-9664-1

    Article  PubMed  Google Scholar 

  • Rajareddy S, Reddy P, Du C, Liu L, Jagarlamudi K, Tang W, Shen Y, Berthet C, Peng SL, Kaldis P, Liu K (2007) p27kip1 (cyclin-dependent kinase inhibitor 1B) controls ovarian development by suppressing follicle endowment and activation and promoting follicle atresia in mice. Mol Endocrinol 21:202–289

    Article  Google Scholar 

  • Rhon-Calderón EA, Galarza RA, Lomniczi A, Faletti AG (2016) The systemic and gonadal toxicity of 3-methylcholanthrene is prevented by daily administration of α-naphthoflavone. Toxicology 353–354:58–69. doi:10.1016/j.tox.2016.05.005

    Article  PubMed  Google Scholar 

  • Robles R, Morita Y, Mann KK, Perez GI, Yang S, Matikainen T, Sherr DH, Tilly JL (2000) The aryl hydrocarbon receptor, a basic helix-loop-helix transcription factor of the PAS gene family, is required for normal ovarian germ cell dynamics in the mouse. Endocrinology 141:450–453

    Article  CAS  PubMed  Google Scholar 

  • Sadeu JC, Foster WG (2013) The cigarette smoke constituent benzo[a]pyrene disrupts metabolic enzyme, and apoptosis pathway member gene expression in ovarian follicles. Reprod Toxicol 40:52–59. doi:10.1016/j.reprotox.2013.05.008

    Article  CAS  PubMed  Google Scholar 

  • Schnekenburger M, Peng L, Puga A (2007) HDAC1 bound to the Cyp1a1 promoter blocks histone acetylation associated with Ah receptor-mediated trans-activation. Biochim Biophys Acta 1769:569–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimada T (2006) Xenobiotic-metabolizing enzymes involved in activation and detoxification of carcinogenic polycyclic aromatic hydrocarbons. Drug Metab Pharmacokinet 21:257–276

    Article  CAS  PubMed  Google Scholar 

  • Shiromizu K, Mattison DR (1985) Murine oocyte destruction following intraovarian treatment with 3-methylcholanthrene or 7,12-dimethylbenz(a)anthracene: protection by alpha-naphthoflavone. Teratog Carcinog Mutagen 5:463–472

    Article  CAS  PubMed  Google Scholar 

  • Sims P (1966) The metabolism of 3-methylcholanthrene and some related compounds by rat-liver homogenates. Biochem J 98:215–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sims P (1970) Qualitative and quantitative studies on the metabolism of a series of aromatic hydrocarbons by rat-liver preparations. Biochem Pharmacol 19:795–818

    Article  CAS  PubMed  Google Scholar 

  • Sobinoff AP, Mahony M, Nixon B, Roman SD, McLaughlin EA (2011) Understanding the Villain: DMBA-induced preantral ovotoxicity involves selective follicular destruction and primordial follicle activation through PI3K/Akt and mTOR signaling. Toxicol Sci 123:563–575. doi:10.1093/toxsci/kfr195

    Article  CAS  PubMed  Google Scholar 

  • Sobinoff AP, Nixon B, Roman SD, McLaughlin EA (2012a) Staying alive: PI3K pathway promotes primordial follicle activation and survival in response to 3MC-induced ovotoxicity. Toxicol Sci 128:258–271. doi:10.1093/toxsci/kfs137

    Article  CAS  PubMed  Google Scholar 

  • Sobinoff AP, Pye V, Nixon B, Roman SD, McLaughlin EA (2012b) Jumping the gun: smoking constituent BaP causes premature primordial follicle activation and impairs oocyte fusibility through oxidative stress. Toxicol Appl Pharmacol 260:70–80. doi:10.1016/j.taap.2012.01.028

    Article  CAS  PubMed  Google Scholar 

  • Sobinoff AP, Beckett EL, Jarnicki AG, Sutherland JM, McCluskey A, Hansbro PM, McLaughlin EA (2013) Scrambled and fried: cigarette smoke exposure causes antral follicle destruction and oocyte dysfunction through oxidative stress. Toxicol Appl Pharmacol 271:156–167. doi:10.1016/j.taap.2013.05.009

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Tan L, Yang F, Luo Y, Li X, Deng HW, Dvornyk V (2012) Meta-analysis suggests that smoking is associated with an increased risk of early natural menopause. Menopause 19:126–132. doi:10.1097/gme.0b013e318224f9ac

    Article  PubMed  Google Scholar 

  • Tang T, Lin X, Yang H, Zhou L, Wang Z, Shan G, Guo Z (2010) Overexpression of antioxidant enzymes upregulates aryl hydrocarbon receptor expression via increased Sp1 DNA-binding activity. Free Radic Biol Med 49:487–492. doi:10.1016/j.freeradbiomed.2010.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson KE, Bourguet SM, Christian PJ, Benedict JC, Sipes IG, Flaws JA, Hoyer PB (2005) Differences between rats and mice in the involvement of the aryl hydrocarbon receptor in 4-vinylcyclohexene diepoxide-induced ovarian follicle loss. Toxicol Appl Pharmacol 203:114–123

    Article  CAS  PubMed  Google Scholar 

  • Thomsen JS, Kietz S, Ström A, Gustafsson JA (2004) HES-1, a novel target gene for the aryl hydrocarbon receptor. Mol Pharmacol 65:165–171

    Article  CAS  PubMed  Google Scholar 

  • Vanorny DA, Mayo KE (2017) The role of Notch signaling in the mammalian ovary. Reproduction 153:R187–R204. doi:10.1530/REP-16-0689

    Article  CAS  PubMed  Google Scholar 

  • Vanorny DA, Prasasya RD, Chalpe AJ, Kilen SM, Mayo KE (2014) Notch signaling regulates ovarian follicle formation and coordinates follicular growth. Mol Endocrinol 28:499–511. doi:10.1210/me.2013-1288

    Article  PubMed  PubMed Central  Google Scholar 

  • Viganò P, Gaffuri B, Ragni G, Di Blasio AM, Vignali M (1997) Intercellular adhesion molecule-1 is expressed on human granulosa cells and mediates their binding to lymphoid cells. J Clin Endocrinol Metab 82:101–105

    Article  PubMed  Google Scholar 

  • Viganò P, Fusi F, Gaffuri B, Bonzi V, Ferrari A, Vignali M (1998) Soluble intercellular adhesion molecule-1 in ovarian follicles: production by granulosa luteal cells and levels in follicular fluid. Fertil Steril 69:774–779

    Article  PubMed  Google Scholar 

  • Xia M, Viera-Hutchins L, Garcia-Lloret M, Noval Rivas M, Wise P, McGhee SA, Chatila ZK, Daher N, Sioutas C, Chatila TA (2015) Vehicular exhaust particles promote allergic airway inflammation through an aryl hydrocarbon receptor-notch signaling cascade. J Allergy Clin Immunol 136:441–453. doi:10.1016/j.jaci.2015.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Q, Cheng Z, Chen X, Lobe CG, Liu J (2017) The role of Notch signalling in ovarian angiogenesis. J Ovarian Res 10:13. doi:10.1186/s13048-017-0308-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang TT, Jiang YY, Shang L, Shi ZZ, Liang JW, Wang Z, Zhang Y, Hao JJ, Jia XM, Xu X, Cai Y, Zhan QM, Wang MR (2015) Overexpression of DNAJB6 promotes colorectal cancer cell invasion through an IQGAP1/ERK-dependent signaling pathway. Mol Carcinog 54:1205–1213. doi:10.1002/mc.22194

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Marcela Marquez and Enzo Cuba for their technical assistances in the maintenance and treatments of animals. This work was supported by PIP 112-2008000271 from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), UBACYT 20020130100156BA from Universidad de Buenos Aires, Argentina, and NIH: 5R01HD084542-02 from the National Institute of Health, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Graciela Faletti.

Ethics declarations

Conflict of interest

The authors declare they have no conflicts of interest.

Ethical standards

All animals were handled according to the Guiding Principles for the Care and Use of Research Animals, and all studies were approved by the Institutional Committee of the School of Medicine of Buenos Aires University, Argentina (CICUAL).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rhon-Calderón, E.A., Toro, C.A., Lomniczi, A. et al. Changes in the expression of genes involved in the ovarian function of rats caused by daily exposure to 3-methylcholanthrene and their prevention by α-naphthoflavone. Arch Toxicol 92, 907–919 (2018). https://doi.org/10.1007/s00204-017-2096-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-017-2096-5

Keywords

Navigation