Archives of Toxicology

, Volume 90, Issue 9, pp 2147–2159 | Cite as

Follow-up studies on genome damage in children after Chernobyl nuclear power plant accident

  • Aleksandra FucicEmail author
  • Anna Aghajanyan
  • Vladimir Druzhinin
  • Varvara Minina
  • Elizaveta Neronova
Review Article


As children are more susceptible to ionizing radiation than adults, each nuclear accident demands special attention and care of this vulnerable population. The Chernobyl nuclear disaster occurred in a region populated with a large number of children, but despite all efforts and expertise of nuclear specialists, it was not possible to avoid casualties. As vast regions of Ukraine, Belarus and Russia were exposed to doses of ionizing radiation, which are known to be related with different diseases, shortly after the accident medical surveillance was launched, which also included analysis of genome damage. Child population affected by internal and external radiation consisted of subjects exposed prenatally, postnatally (both evacuated and non-evacuated), born by irradiated fathers who worked as liquidators, and parents exposed environmentally. In all groups of children during the last 30 years who were exposed to doses which were significantly higher than that recommended for general population of 1 mSv per year, increased genome damage was detected. Increased genome damage includes statistically higher frequency of dicentric and ring chromosomes, chromated and chromosome breaks, acentric fragments, translocations, and micronuclei. The presence of rogue cells confirmed internal contamination. Genome instability and radiosensitivity in children was detected both in evacuated and continuously exposed children. Today the population exposed to ionizing radiation in 1986 is in reproductive period of life and follow-up of this population and their offspring is of great importance. This review aims to give insight in results of studies, which reported genome damage in children in journals without language restrictions.


Chernobyl Genome damage Children Ionizing radiation 



Preparation of manuscript is funded by State task No. 2162 of Russian Federation and within the scope of Croatian Centre of Excellence for Reproductive and Regenerative medicine (Unit of Biomedical Research of Reproduction and Development.


  1. Aghajanyan A (2015) Transgenerational genomic instability in children LAMBERT Academic Publishing. ISBN: 978-3-659-40728-4Google Scholar
  2. Aghajanyan A, Suskov I (2009) Transgenerational genomic instability in children of irradiated parents as a result of Chernobyl nuclear accident. Mutat Res 671:52–57PubMedGoogle Scholar
  3. Aghajanyan AV, Suskov II (2010) Genomic Instability in Children Born after the Chernobyl Nuclear Accident (in vivo and in vitro Studies). Russ J Genet 46(6):740–749Google Scholar
  4. Aghajanyan A, Kuzmina N, Sipyagyna A, Larisa Baleva L, Suskov I (2011) Analysis of genomic instability in the offspring of fathers exposed to low doses of ionizing radiation. Environ Mol Mutagen 52:538–546PubMedGoogle Scholar
  5. Akulevich NM, Saenko VA, Rogounovitch TI, Drozd VM, Lushnikov EF, Ivanov VK, Mitsutake N, Kominami R, Yamashita S (2009) Polymorphisms of DNA damage response genes in radiation-related and sporadic papillary thyroid carcinoma. Endocr Relat Cancer 16:491–503PubMedGoogle Scholar
  6. Alsbeih G, Al-Meer RS, Al-Harbi N, Bin Judia S, Al-Buhairi M, Venturina NQ, Moftah B (2016) Gender bias in individual radiosensitivity and the association with genetic polymorphic variations. Radiother Oncol S0167-8140(16):00122–00125Google Scholar
  7. Aseeva EA, Snigireva GP, Neverova AL, Novitskaia NN, Khazins ED, Domracheva EV (2010) Multiaberrant cells in groups of people exposed to radiation in different situations and their possible biological role. Biophysics 55:496–503Google Scholar
  8. Auvinen A, Hakama M, Arvela H, Hakulinen T, Rahola T, Suomela M, Söderman B, Rytömaa T (1994) Fallout from Chernobyl and incidence of childhood leukaemia in Finland 1976–1992. BMJ 309(6948):151–154PubMedPubMedCentralGoogle Scholar
  9. Bakhmutsky MV, Joiner MC, Jones TB, Tucker JD (2014) Differences in cytogenetic sensitivity to ionizing radiation in newborns and adults. Radiat Res 181(6):605–616PubMedGoogle Scholar
  10. Barale R, Gemignani F, Morizzo C, Lori A, Rossi A, Antonelli A, Di Pretoro G, Panasiuk G, Ballardin M (1998) Cytogenetic damage in lymphocytes of healthy and thyroid tumor-affected children from the Gomel region (Belarus). Mutat Res 405:89–95Google Scholar
  11. Bard D, Verger P, Hubert P (1997) Chernobyl, 10 years after: health consequences. Epidemiol Rev 19(2):187–204PubMedGoogle Scholar
  12. BIER VII Phase 2 (2006) Health risks from exposure to low levels of ionizing radiation. The National Academies Press, WashingtonGoogle Scholar
  13. Bland EP, Docker MF, Crawford JS, Farr RF (1969) Radioactive iodine uptake by thyroid of breast fed infants after maternal blood volume measurements. Lancet 294(7629):1039–1040Google Scholar
  14. Bonassi S, Znaor A, Ceppi M, Lando C, Chang WP, Holland N, Kirsch-Volders M, Zeiger E, Ban S, Barale R, Bigatti MP, Bolognesi C, Cebulska-Wasilewska A, Fabianova E, Fucic A, Hagmar L, Joksic G, Martelli A, Migliore L, Mirkova E, Scarfi MR, Zijno A, Norppa H, Fenech M (2007) An increased micronucleus frequency in peripheral blood lymphocytes predicts the risk of cancer in humans. Carcinogenesis 28(3):625–631PubMedGoogle Scholar
  15. Bonassi S, Norppa H, Ceppi M, Strömberg U, Vermeulen R, Znaor A, Cebulska-Wasilewska A, Fabianova E, Fucic A, Gundy S, Hansteen IL, Knudsen LE, Lazutka J, Rossner P, Sram RJ, Boffetta P (2008) Chromosomal aberration frequency in lymphocytes predicts the risk of cancer: results from a pooled cohort study of 22,358 subjects in 11 countries. Carcinogenesis 29(6):1178–1183PubMedPubMedCentralGoogle Scholar
  16. Brenner AV, Tronko MD, Hatch M, Bogdanova TI, Oliynik VA, Lubin JH, Zablotska LB, Tereschenko VP, McConnell RJ, Zamotaeva GA, O’Kane P, Bouville AC, Chaykovskaya LV, Greenebaum E, Paster IP, Shpak VM, Ron E (2011) I-131 dose response for incident thyroid cancers in Ukraine related to the Chernobyl accident. Environ Health Perspect 119:933–939PubMedPubMedCentralGoogle Scholar
  17. Damiola F, Byrnes G, Moissonnier M, Pertesi M, Deltour I, Fillon A, Le Calvez-Kelm F, Tenet V, McKay-Chopin S, McKay JD, Malakhova I, Masyakin V, Cardis E, Lesueur F, Kesminiene A (2014) Contribution of ATM and FOXE1 (TTF2) to risk of papillary thyroid carcinoma in Belarusian children exposed to radiation. Int J Cancer 134(7):1659–1668PubMedGoogle Scholar
  18. Demenkova IG, Kovaleva VI (2011) Genetic characteristic of children whose parents were subject to radiation impact in their childhood or at puberty as a result of the Chernobyl accident. Medico-biologiceskye problemi zhizni 2(6):74–79Google Scholar
  19. Djomina EA, Barilyak IR (2010) Radiation catastrophies and clinic genetic factors. Citologia i Genetika 3:73–81Google Scholar
  20. Domracheva EV, Kuznetsov SA, Shklovski-Kordi NE, Vorobiov AI (1991) Cells with multiple chromosomal aberrations in residents of Chernobyl area. Gematologiya i transfuziologiya 11:36–37Google Scholar
  21. Domracheva EV, Rivkind NB, Aseeva EA, Obukhova TN, D'achenko LV, Vorobiov AI (2000) Stable and unstable aberrations in lymphocytes of Chernobyl accident clearance workers carrying rogue cells. Appl Radiat Isot 52(5):1153–1159PubMedGoogle Scholar
  22. Druzhinin V, Bakanova M, Fucic A, Golovina T, Savchenko Y, Sinitsky M, Volobayev V (2016) Lymphocytes with multiple chromosomal damages in a large cohort of West Siberia residents: results of long-term monitoring. Mutat Res 784–785:1–7PubMedGoogle Scholar
  23. Dubrova YE, Jeffreys A, Nesterov VN, Krouchinsky NG, Ostapenko VA, Neumann R, Neil DL, Jeffreys AJ (1996) Human minisatellite mutation rate after the Chernobyl accident. Nature 380(6576):683–686PubMedGoogle Scholar
  24. Dubrova YE, Plumb M, Brown J, Jeffreys AJ (1998) Radiation-induced germline instability at minisatellite loci. Int J Radiat Biol 74(6):689–696PubMedGoogle Scholar
  25. Dubrova YE, Grant G, Chumak AA, Stezhka VA, Karakasian AN (2002) Elevated minisatellite mutation rate in the post-Chernobyl families from Ukraine. Am J Hum Genet 71(4):801–809PubMedPubMedCentralGoogle Scholar
  26. Ermalitskiy AP, Lyaginskaya AM, Osipov VA, Kuptsov VV (2013) On the problem of permissible levels of emergency and subsequent occupational radiation exposure of people of reproductive age. Gigiena i Sanitariya 3:46–50Google Scholar
  27. Fedoretsova F, Kravtsov VYu, Belyakov OV, Vorobtsova IYe, Nekrasov VN, Nikiforov AM (1997) Late cytogenetic effects of the Chernobyl accident in children. Int J Pediat Hematol/Oncol 4(3):295–299Google Scholar
  28. Fucic A, Gamulin M (2011) Interaction between ionizing radiation and estrogen: What we are missing? Med Hypotheses 77(6):966–969PubMedGoogle Scholar
  29. Fucic A, Brunborg G, Lasan R, Jezek D, Knudsen LE, Merlo DF (2008) Genomic damage in children accidentally exposed to ionizing radiation: a review of the literature. Mutat Res 658(1–2):111–123PubMedGoogle Scholar
  30. Fucic A, Bonassi S, Gundy S, Lazutka J, Sram R, Ceppi M, Lucas JN (2016) Frequency of acentric fragments are associated with cancer risk in subjects exposed to ionizing radiation. Anticancer Res 36(5):2451–2457PubMedGoogle Scholar
  31. Furitsu K, Ryo H, Yeliseeva KG, le Thuy TT, Kawabata H, Krupnova EV, Trusova VD, Rzheutsky VA, Nakajima H, Kartel N, Nomura T (2005) Microsatellite mutations show no increases in the children of the Chernobyl liquidators. Mutat Res 581(1–2):69–82PubMedGoogle Scholar
  32. Goto H, Watanabe T, Miyao M, Fukuda H, Sato Y, Oshida Y (2012) Cancer mortality among atomic bomb survivors exposed as children. Environ Health Prev Med 17(3):228–234PubMedGoogle Scholar
  33. Handkiewicz-Junak D, Swierniak M, Rusinek D, Oczko-Wojciechowska M, Dom G, Maenhaut C, Unger K, Detours V, Bogdanova T, Thomas G,Likhtarov I, Jaksik R, Kowalska M, Chmielik E, Jarzab M, Swierniak A, Jarzab B (2016) Gene signature of the post-Chernobyl papillary thyroid cancer. Eur J Nucl Med Mol Imaging (in press)Google Scholar
  34. Hatch M, Ron E, Bouville A, Zablotska L, Howe G (2005) The Chernobyl disaster: cancer following the accident at the Chernobyl nuclear power plant. Epidemiol Rev 27(1):56–66PubMedGoogle Scholar
  35. Hattis D, Goble R, Russ A, Chu M, Ericson J (2004) Age-related differences in susceptibility to carcinogenesis: a quantitative analysis of empirical animal bioassay data. Environ Health Perspect 112(11):1152–1158PubMedPubMedCentralGoogle Scholar
  36. Heidenreich WF, Bogdanova TI, Biryukov AG, Tronko ND (2004) Time trends of thyroid cancer incidence in Ukraine after the Chernobyl accident. J Radiol Prot 24(3):283–293PubMedGoogle Scholar
  37. Hess J, Thomas G, Braselmann H, Bauer V, Bogdanova T, Wienberg J, Zitzelsberger H, Unger K (2011) Gain of chromosome band 7q11 in papillary thyroid carcinomas of young patients is associated with exposure to low-dose irradiation. Proc Natl Acad Sci USA 108(23):9595–9600PubMedGoogle Scholar
  38. Imanaka T, Koide H (2000) Assessment of external dose to inhabitants evacuated from the 30 km zone soon after the Chernobyl accident. Radiat Biol Radioecol 40(5):582–588Google Scholar
  39. Internationa Atomic Energy Agency (1991) The International Chernobyl Project, STI/PUB/884, Non-Serial publicationsGoogle Scholar
  40. International Atomic Energy Agency (1996) Ten years after Chernobyl: What do we really know? Non-Serial publication, IAEA/PI/A51RGoogle Scholar
  41. International Atomic Energy Agency (IAEA) (2011) Cytogenetic dosimetry: applications in preparedness for and response to radiation emergenciesGoogle Scholar
  42. International Atomic Energy Agency (IAEA) (2011) Environmental consequences of the Chernobyl accident and their remediation: twenty years of experience, Report of the Chernobyl Forum Expert Group ‘Environment’ Vienna, Radiological assessment reports seriesGoogle Scholar
  43. Ivanov VK, Gorsky AI, Kashcheev VV, Maksiutov MA, Tumanov KA (2009a) Latent period in induction of radiogenic solid tumors in the cohort of emergency workers. Radiat Environ Biophys 48:247–252PubMedGoogle Scholar
  44. Ivanov VK, Gorsky AI, Kashcheev VV, Maksioutov MA, Tumanov KA (2009b) Latent period in induction of radiogenic solid tumors in the cohort of emergency workers. Radiat Environ Biophys 48(3):247–252PubMedGoogle Scholar
  45. Ivanov VK, Kashcheev VV, Chekin SY, Maksioutov MA, Tumanov KA, Vlasov OK, Shchukina NV, Tsyb AF (2012) Radiation-epidemiological studies of thyroid cancer incidence in Russia after the Chernobyl accident (estimation of radiation risks, 1991–2008 follow-up period). Radiat Prot Dosim 151(3):489–499Google Scholar
  46. Iwanaga M, Hsu WL, Soda M, Takasaki Y, Tawara M, Joh T, Amenomori T, Yamamura M, Yoshida Y, Koba T, Miyazaki Y, Matsuo T, Preston DL, Suyama A, Kodama K, Tomonaga M (2011) Risk of myelodysplastic syndromes in people exposed to ionizing radiation: a retrospective cohort study of Nagasaki atomic bomb survivors. J Clin Oncol 29(4):428–434PubMedGoogle Scholar
  47. Kaiser JC, Meckbach R, Jacob P (2014) Genomic instability and radiation risk in molecular pathways to colon cancer. PLoS ONE 9(10):e111024PubMedPubMedCentralGoogle Scholar
  48. Kashcheev VV, Chekin SY, Maksioutov MA, Tumanov KA, Kochergina EV, Kashcheeva PV, Shchukina NV, Ivanov VK (2015) Incidence and mortality of solid cancer among emergency workers of the Chernobyl accident: assessment of radiation risks for the follow-up period of 1992–2009. Radiat Environ Biophys 54(1):13–23PubMedGoogle Scholar
  49. Kennedy RD, D’Andrea AD (2006) DNA repair pathways in clinical practice: lessons from pediatric cancer susceptibility syndromes. J Clin Oncol 24(23):3799–3808PubMedGoogle Scholar
  50. Kiuru A, Auvinen A, Luokkamaki M, Makkonen K, Veidebaum T, Tekkel M, Rahu M, Hakulinen T, Servomaa K, Rytömaa T (2003) Mustonen R Hereditary minisatellite mutations among the offspring of Estonian Chernobyl cleanup workers. Radiat Res 159(5):651–655PubMedGoogle Scholar
  51. Kleinerman RA (2006) Cancer risks following diagnostic and therapeutic radiation exposure in children. Pediatr Radiol 36(Suppl 2):121–125PubMedPubMedCentralGoogle Scholar
  52. Kontsantinov YuO, Korelina NF, Lebedev OV, Novikova OV (2007) Age specific formation of doses to children from radioactive cesium following the Chernobyl accident. Radiat Biol Radioecol 47(6):741–745Google Scholar
  53. Kurttio P, Seppa K, Pasanen K, Patama T, Auvinen A, Pukkala E, Heinävaara S, Arvela H, Hakulinen T (2013) Fallout from the Chernobyl accident and overall cancer incidence in Finland. Cancer Epidemiol 37(5):585–592PubMedGoogle Scholar
  54. Land CE, Tokunaga M, Koyama K, Soda M, Preston DL, Nishimori I, Tokuoka S (2003) Incidence of female breast cancer among atomic bomb survivors, Hiroshima and Nagasaki, 1950–1990. Radiat Res 160:707–717PubMedGoogle Scholar
  55. Larsen PR, Canand RA, Knudsen K (1982) Thyroid hypofunction after exposure to fallout from a hydrogen bomb explosion. JAMA 247:1571–1575PubMedGoogle Scholar
  56. Laziuk GI, Kirillova IA, Dubrova IuE, Novikova IV (1994) Incidence of developmental defects in human embryos in the territory of Byelarus after the accident at the Chernobyl nuclear power station. Genetika 30(9):1268–1273PubMedGoogle Scholar
  57. Leonard A, Baltus I, Leonard ED, Gerber GB, Richard F, Wambersie A (1995) Dose-effect relationship for in vivo and in vitro induction of dicentric aberrations in blood lymphocytes of children. Radiat Res 141(1):95–98PubMedGoogle Scholar
  58. Livshits LA, Malyarchuk SG, Kravchenko SA, Matsuka GH, Lukyanova EM, Antipkin YG, Arabskaya LP, Petit E, Giraudeau F, Gourmelon P, Vergnaud G, Le Guen B (2001) Children of chernobyl cleanup workers do not show elevated rates of mutations in minisatellite alleles. Radiat Res 155(1):74–80PubMedGoogle Scholar
  59. Lombardi S, Fuoco I, di Fluri G, Costa F, Ricchiuti A, Biondi G, Nardini V, Scarpato R (2015) Genomic instability and cellular stress in organ biopsies and peripheral blood lymphocytes from patients with colorectal cancer and predisposing pathologies. Oncotarget 6(17):14852–14864PubMedPubMedCentralGoogle Scholar
  60. Lyaginskaja AM, Tukov AR, Osipov VA, Ermallitskiy AP, Prohorova ON (2009) Congenital malformations at posterity of the liquidators of the consequences from Chernobyl accident. Radiat Biol radioecol 49(6):694–702Google Scholar
  61. Lyubimova NE, Vorobtsova IE (2008) The effect of low-dose irradiation and of age on the in vitro radiosensitivity of human lymphocytes. Radiat Biol Radioecol 48(2):153–159Google Scholar
  62. Maznik NA, Vinnikov VA, Maznik VS (2003) Assessing distribution of individual doses of irradiation in the Chernobyl accident rescuers, based on the findings of a cytogenetic analysis. Radiat Biol Radioecol 43(4): 412–419Google Scholar
  63. McCarthy M (1997) Nuclear bomb test fallout may cause many US cancers. Lancet 350(9075):415Google Scholar
  64. Mikhalevich LS, Lloyd DC, Edwards AA, Perepetskaya GA, Kartel NA (2000a) Dose estimates made by dicentric analysis for some Belarussian children irradiated by the Chernobyl accident. Radiat Prot Dosim 87(2):109–114Google Scholar
  65. Mikhalevich S, De Zwart FA, Perepetskaya GA, Chebotareva NV, Mikhalevich EA, Tates AD (2000b) Radiation effects in lymphocytes of children living in a Chernobyl contaminated region of Belarus. Int J Radiat Biol 76(10):1377–1385PubMedGoogle Scholar
  66. Mikheenko TV (2016) 30 years after the Chernobyl accident: medical problems and solutions. In: Maslinikova AB (ed) Molecular biological technology in medical practice, vol 24. Akademizdat, Novosibirsk, pp 120–124Google Scholar
  67. Miller RW, Zanzonico PB (2005) Radioiodine fallout and breast-feeding. Rad Res 164(3):339–340Google Scholar
  68. Minenko VV, Drozdovich SS, Tretiakevich VE, Shevchuk G (1998) Determination of annual total effective exposure doses for the residents of Belarus populated areas radionuclide-contaminated after the Chernobyl accident. Accompl Med Sci Belarus 3:23–45Google Scholar
  69. Minina V, Sinitsky My, Druzhinin VG, Fucic A, Bakanova ML, Ryzhkova AV, Savchenko YA, Timofeeva AA, Titov RA, Voronina EN, Volobaev VP, Titov VA (2016) Chromosome aberrations in peripheral blood lymphocytes of lung cancer patients exposed to radon and air pollution. Eur J Cancer Prev (in press)Google Scholar
  70. Mitelman Y, Trent Kaneko J (1991) Report of the committee on chromosome changes in neoplasia. Cytogenet Cell Genet 58:1053–1079Google Scholar
  71. Nagataki S, Nystrom E (2002) Epidemiology and primary prevention of thyroid cancer. Thyroid 12(10):889–896PubMedGoogle Scholar
  72. Nastyukova VV, Stepanova EI, Glasko VI (2002) Cytogenetic effects of children exposed to different levels of low doses of ionizing radiation. Cytologia Genetika 2:38–45Google Scholar
  73. Neronova E, Slozina N, Nikiforov A (2003) Chromosome alterations in cleanup workers sampled years after the Chernobyl accident. Radiat Res 160(1):46–51PubMedGoogle Scholar
  74. Neyfakh A, Alimbekova AI, Ivanenko GF (1998) Vitamin E and A deficiencies in children correlate with Chernobyl radiation loads of their mothers. Biochemistry (Moscow) 63(10):1138–1143Google Scholar
  75. Noshchenko AG, Bondar OY, Drozdova VD (2010) Radiation-induced leukemia among children aged 0–5 years at the time of the Chernobyl accident. Int J Cancer 127(2):412–426PubMedGoogle Scholar
  76. Pacini F, Vorontsova T, Molinaro E, Kuchinskaya E, Agate L, Sharova E, Astachova L, Chiovato L, Pinchera A (1999) Radiation and thyroid autoimmunity. Int J Radiat Med 3(3–4):20–24Google Scholar
  77. Padovani L, Caporossi D, Tedeschi B, Vernole P, Nicoletti B, Mauro F (1993) Cytogenetic study in lymphocytes from children exposed to ionizing radiation after the Chernobyl accident. Mutat Res 319:55–60PubMedGoogle Scholar
  78. Padovani L, Stronati F, Mauro A, Testa M, Appolilini P, Anzidei D, Caporossi B, Tedeschi P, Vernole P (1997) Cytogenetic effects in lymphocytes from children exposed to radiation fall-out after the Chernobyl accident. Mutat Res 395:249–254PubMedGoogle Scholar
  79. Piciu D, Piciu A, Irimie A (2012) Thyroid cancer in children: a 20-year study at a Romanian oncology institute. Endocr J 59(6):489–496PubMedGoogle Scholar
  80. Pilinskaya MA, Shemetun AM, Dybsky SS, Redko DV, Eremeyeva MN (1992) The cytogenetic effect in peripheral blood lymphocytes as an indicator of the influence on a human being of Chernobyl accident factors. Radiobiologya 32(5):632–639Google Scholar
  81. Pilinskaya MA, Shemetun AM, Dybski SS, Redko DV, Znaevskaya IA (1994) Identify of the multiaberrant lymphocytes at cytogenetic examination of different groups of persons who have contact with mutagenic factors. Tsitologya Genet 28(1):27–32Google Scholar
  82. Pilinskaya MA, Shemetun AM, Dybski SS (2001) Results of 14 years cytogenetic follow up of cohorts under priority monitoring who suffered from Chernobyl nuclear plant accident. Vest RAMN 10:80–84Google Scholar
  83. Popova NA, Nazarenko LP, Nazarenko SA (2004) Multiaberrant cell formation caused by exposure to internal densely-ionizing irradiation. Russ J Genet 40:1419–1422Google Scholar
  84. Preston DL, Cullings H, Suyama A, Funamoto S, Nishi N, Soda M, Mabuchi K, Kodama K, Kasagi F, Shore RE (2008) Solid cancer incidence in atomic bomb survivors exposed in utero or as young children. J Natl Cancer Inst 100(6):428–436PubMedGoogle Scholar
  85. Prysyazhnyuk A, Grstchenko VG, Zakordonets VA, Fuzik MM, YeM Slipenyuk, Fedorenko ZP, Gulap LO (2004) Main cancer incidence regularities in cohort being exposed to radiation in childhood. Int J Radiat Med 6(1–4):16–23Google Scholar
  86. Prysyazhnyuk A, Gristchenko V, Fedorenko Z, Gulak L, Fuzik M, Slipenyuk K, Tirmarche M (2007) Twenty years after the Chernobyl accident: solid cancer incidence in various groups of the Ukrainian population. Radiat Environ Biophys 46(1):43–51PubMedGoogle Scholar
  87. Pukkala E, Kesminiene A, Poliakov S, Zyzhov A, Drozdovich V, Kovgan L, Kyyronen P, Malakhova IV, Gulak L, Cardis E (2006) Breast cancer in Belarus and Ukraine after the Chernobyl accident. Int J Cancer 119(3):651–658PubMedGoogle Scholar
  88. Roberto B, Gemignani F, Morizzo C, Lori A, Rossi A, Antonelli A, Di Pretoro G, Panasiuk G, Ballardin M (1998) Cytogenetic damage in lymphocytes of healthy and thyroid tumor-affected children from the Gomel region (Belarus). Mutat Res 405(1):89–95PubMedGoogle Scholar
  89. Russian National Report (2011) Moscow, Russian Federation Ministry of Civil Defense, Emergencies and DisasterGoogle Scholar
  90. Sadetzki S, Mandelzweig L (2009) Childhood exposure to external ionising radiation and solid cancer risk. Br J Cancer 100(7):1021–1025PubMedPubMedCentralGoogle Scholar
  91. Scarpato R, Lori A, Panasiuk G, Barale R (1997) FISH analysis of translocations in lymphocytes of children exposed to the Chernobyl fallout: preferential involvement of chromosome 10. Cytogenet Cell Genet 79(1–2):153–156PubMedGoogle Scholar
  92. Sevankaev AV, Zhloba AA, Potetnya IO, Ankina MA, Golub EV, Epifanova NV, Zapitaeva TA, Kozlov VM, Mihailovova GF, Moisenko VV, Pozdishkina OV, Pyatenko VS (1995) Results of cytogenetic follow up of children living in region contaminated by radionuclides in Bryansk region. Radiat Biol Radioecol 35(5):607–611Google Scholar
  93. Sevan’kaev AV, Mikhaĭlova GF, Potetnia OI, Tsepenko VV, Khvostunov IK, Golub EV, Piatenko VS, Pozdyshkina OV, Shepel’ NN, Matveenko EG, Borovikova MP, Omaraskhabov NO (2005) Results of dynamic cytogenetic study of children and teenagers living in areas, radioactive by contaminated after the Chernobyl accident. Radiats Biol Radioecol 45(1):5–15PubMedGoogle Scholar
  94. Shevchenko VA, Snigireva GP (2006) The significance of cytogenetic investigation for the estimation of Chernobyl accident consequences. Radiats Biol Radioecol 46(2):133–139PubMedGoogle Scholar
  95. Shimizu Y, Kato H, Schull W (1991) Risk of cancer among atomic bomb survivors. J Radiat Res Suppl 2:54–63Google Scholar
  96. Slebos RJ, Little RE, Umbach DM, Antipkin Y, Zadaorozhnaja TD, Mendel NA, Sommer CA, Conway K, Parrish E, Gulino S, Taylor JA (2004) Mini-and microsatellite mutations in children from Chernobyl accident cleanup workers. Mutat Res 559(1–2):143–151PubMedGoogle Scholar
  97. Snigiryova G, Braselmann H, Salassidis K, Shevchenko V, Bauchinger M (1997) Retrospective biodosimetry of Chernobyl clean-up workers using chromosome painting and conventional chromosome analysis. Int J Radiat Biol 71(2):119–127PubMedGoogle Scholar
  98. Sperling K, Pelz J, Wegner RD, Schulzke I, Struck E (1991) Frequency of trisomy 21 in Germany before and after the Chernobyl accident. Biomed Pharmacother 45(6):255–262PubMedGoogle Scholar
  99. Stepanova EI, Mishraina JA, Vdovenko VU (2002) Remote cytogenetic effects in children exposed in prenatal period after the Chernobyl NPP accident, book of papers. International conference “Genetic consequences of emergency radiation situations”, Moscow, Russia, pp 185–187Google Scholar
  100. Stepanova EI, Vdovenko VYu, Kolpakov IE, Kondrashova VG, Skvarskaya EA, Misharina ZA (2006) Results of 20 years follow up of Ukrainian children health suffered from Chenrobyl nuclear accident. In: Baleva LS, Caregorodceva AD (eds) Children health and radiation, vol 2. Monograph, Moscow, pp 57–60Google Scholar
  101. Stepanova I, Vdovenko VU, Misharina JA (2007) Postanatal effects in children irradiated during the intrauterine development as a result of failure at the Chernobyl NPP. Radiat Biol Radioecol 47(5):523–529Google Scholar
  102. Stsjazhko VA, Tsyb AF, Tronko ND, Souchkevitch G, Baverstock KF (1995) Childhood thyroid cancer since accident at Chernobyl. BMJ 310(6982):801PubMedPubMedCentralGoogle Scholar
  103. Suskov II, Kuzmina NS (2001) The problem of induced genomic instability in the child organism cells under conditions of long-term effect of small radiation doses. Radiat Biol Radioecology 41:606–614Google Scholar
  104. Suskov IN, Agadzhanian AV, Kuz’mina NS, Elisova TV, Iofa EL, Nilova IN, Akaeva EA, Kuznetsova GI, Rubanovich AV, Tskhovrebova LV, Baleva LS, Sipiagina AE (2006) The problem of the transgeneration phenomenon of genome instability in sick children of different age groups after the accident at the Chernobyl Nuclear Power Plant. Radiats Biol Radioecol 46(4):466–474PubMedGoogle Scholar
  105. Suskov II, Kuzmina NS, Aghajanyan AV, Suskova VS, Rubanovich AV (2008) Individual Peculiarities of Transgenerational Genomic Instability in Children of Liquidators of the Accident at the CHNPP (Cytogenetic and Immunogenetic Characteristics). Radiat Biol Radioecology 48:278–286Google Scholar
  106. Takahashi M, Saenko VA, Rogounovitch TI, Kawaguchi T, Drozd VM, Takigawa-Imamura H, Akulevich NM, Ratanajaraya C, Mitsutake N, Takamura N, Danilova LI, Lushchik ML, Demidchik YE, Heath S, Yamada R, Lathrop M, Matsuda F, Yamashita S (2010) The FOXE1 locus is a major genetic determinant for radiation-related thyroid carcinoma in Chernobyl. Hum Mol Genet 19:2516–2523PubMedGoogle Scholar
  107. Tazebay UH, Wapnir IL, Dohan O, Zuckier LS, Zhao QH, Deng HF, Amenta PS, Fineberg S, Pestell RG, Carrasco N (2000) The mammary gland iodide transporter is expressed during lactation and in breast cancer. Nat Med 6(8):871–878PubMedGoogle Scholar
  108. Tokunaga M, Norman JE Jr, Asano M, Tokuoka S, Ezaki H, Nishimori I, Tsuji Y (1979) Malignant breast tumors among atomic bomb survivors, Hiroshima and Nagasaki, 1950-74. J Natl Cancer Inst 62(6):1347–1359PubMedGoogle Scholar
  109. Tsuda T, Tokinobu A, Yamamoto E, Suzuki E (2016) Thyroid Cancer Detection by Ultrasound Among Residents Ages 18 Years and Younger in Fukushima, Japan: 2011 to 2014. Epidemiology 27(3):316–322PubMedPubMedCentralGoogle Scholar
  110. United Nation Forum (EGE) (2005) Environmental Consequences of the Chenrobyl Accident and their Remedation: twenty years of experienceGoogle Scholar
  111. United Nations Scientific Committee on the Effects of Atomic Radiation, Sources, Effects and Risks of Ionizing Radiation, UNSCEAR 2013 Report to the General AssemblyGoogle Scholar
  112. Ushenkova LN, Koterov AN, Biryukov AP (2015) Pooled Analysis of RET/PTC Gene Rearrangement Rate in Sporadic and Radiogenic Thyroid Papillary Carcinoma Radiats Biol Radioecol 55(4):355–388PubMedGoogle Scholar
  113. Venturi S (2001) Is there a role for iodine in breast diseases? Breast 10(5):379–382PubMedGoogle Scholar
  114. Vorobtsova IE (2006) Transgenerational Transmission of Radiation Induced Genomic Instability. Radiacio. Biol Radioecol 46(4):441–446Google Scholar
  115. Vorobtsova IE, Vorobyeva MV, Bogomazova AN, Pukkenen AY, Arkhangelskaya TB (1995) Cytogenetic study of children living in St Petersburg region who suffered from the Chernobyl accident: the rate of unstable chromosome aberrations in peripheral blood lymphocytes. Radiat Biol Radioecol 35(5):630–635Google Scholar
  116. Waugh AP, Beare DM, Arlett CF, Green MH, Cole J (1991) Comparative human cellular radiosensitivity: IV. The increased sensitivity of human neonatal cord blood lymphocytes to gamma-irradiation compared with lymphocytes from children and adults. Int J Radiat Biol 59(3):767–776PubMedGoogle Scholar
  117. Weinberg E, Nevo A, Korol T, Fahima G, Rennert S (1997) Molecular changes in the offspring of liquidators who emigrated to Israel from the Chernobyl disaster area. Environ Health Perspect 105(6):1479–1481PubMedPubMedCentralGoogle Scholar
  118. Weinberg HS, Korol AB, Kirzhner VM, Avivi A, Fahima T, Nevo E, Shapiro S, Rennert G, Piatak O, Stepanova EI, Skvarskaja E (2001) Very high mutation rate in offspring of Chernobyl accident liquidators. Proc Biol Sci 268(1471):1001–1005PubMedPubMedCentralGoogle Scholar
  119. Yablokov AV, Nesterenko VB (2009) Chernobyl Consequences of the Catastrophe for People and the Environment, Ed.Yablokov, Nesterenko, Nesterenko, Ann NY Acad Sci 1181Google Scholar
  120. Zablotska LB, Ron E, Rozhko AV, Hatch M, Polyanskaya ON, Brenner AV, Lubin J, Romanov GN, McConnell RJ, O’Kane P, Evseenko VV, Drozdovitch VV, Luckyanov N, Minenko VF, Bouville A, Masyakin VB (2011) Thyroid cancer risk in Belarus among children and adolescents exposed to radioiodine after the Chornobyl accident. Br J Cancer 104(1):181–187PubMedGoogle Scholar
  121. Zablotska LB, Nadyrov EA, Polyanskaya ON, McConnell RJ, O’Kane P, Lubin J, Hatch M, Little MP, Brenner AV, Veyalkin IV, Yauseyenka VV, Bouville A, Drozdovitch VV, Minenko VF, Demidchik YE, Mabuchi K, Rozhko AV (2015) Risk of thyroid follicular adenoma among children and adolescents in Belarus exposed to iodine-131 after the Chornobyl accident. Am J Epidemiol 182(9):781–790PubMedPubMedCentralGoogle Scholar
  122. Zatsepin I, Verger P, Robert-Gnansia E, Gagniere B, Trimarche M, Khmel R, Babicheva I, Lazjuk G (2007) Dow syndrome time clustering in January 1987 in Belarus: link with the Chernobyl accident? Reprod Toxicol 24(3–4):289–295PubMedGoogle Scholar
  123. Zotti-Martelli L, Migliore L, Panasiuk G, Barale R (1999) Micronucleus frequency in Gomel (Belarus) children affected and not affected by thyroid cancer. Mutat Res 440:35–43PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Aleksandra Fucic
    • 1
    Email author
  • Anna Aghajanyan
    • 2
  • Vladimir Druzhinin
    • 3
    • 4
  • Varvara Minina
    • 3
    • 4
  • Elizaveta Neronova
    • 5
  1. 1.Institute for Medical Research and Occupational HealthZagrebCroatia
  2. 2.Institute of MedicinePeoples’ Friendship University of Russia (RUDN)MoscowRussian Federation
  3. 3.Kemerovo State UniversityKemerovoRussian Federation
  4. 4.Federal State Budget Scientific InstitutionThe Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of SciencesKemerovoRussian Federation
  5. 5.Nikiforov Russian Center Emergency and Radiation Medicine EMERCOM of RussiaSt PetersburgRussian Federation

Personalised recommendations