Skip to main content
Log in

Analysis of genome instability in offspring of Mayak workers’ families: Minisatellite CEB

  • Human Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Genome instability transmission in offspring was analyzed in order to evaluate the risk of delayed genetic effects of exposure in 95 family triplets in which only fathers experienced prolonged occupational radiation exposure. The mean total preconceptive absorbed dose (TPAD) of external gamma radiation in the paternal gonads was 1.65 ± 0.080 Gy (dose range of 0.57–5.70 Gy), and the mean TPAD of internal alpha radiation from incorporated plutonium-239 in the gonads was 0.0015 ± 0.0003 Gy (dose range 0.000–0.015 Gy). The control group consisted of 50 family triplets in which parents were not occupationally exposed. The mutation process was studied using PCR based on hypervariable minisatellite marker CEB1 (chromosome 2, 2q37.3). The paternal type of inheritance of mutations for minisatellite CEB1 was found in 80% of cases. The analysis revealed a statistically significant increase in minisatellite CEB1 mutations in the common group of families in which fathers experienced prolonged occupational radiation exposure and in the group of families in which fathers were exposed to radiation in a dosage range of 0.5–1.0 Gy as compared to the control, reaching a significance level of p = 0.109 and p = 0.058, respectively. The dose threshold of mutation detection in the offspring of Mayak PA workers was estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tatsukawa, Y., Cologne, J.B., Hsu, W.L., et al., Radiation risk of individual multifactorial diseases in off-spring of the atomic-bomb survivors: a clinical health study, J. Radiol. Prot., 2013, vol. 33, no. 2, pp. 281–293.

    Article  PubMed  Google Scholar 

  2. Miller, R.W. and Jablon, S., A search for late radiation effects among men who served as X-ray technologists in the US army during World War II, Radiology, 1970, vol. 96, no. 2, pp. 296–274.

    Article  Google Scholar 

  3. Winther, J.F., Olsen, J.H., Wu, H., et al., Genetic disease in the children of Danish survivors of childhood and adolescent cancer, J. Clin. Oncol., 2012, vol. 30, no. 1, pp. 27–33.

    Article  PubMed Central  PubMed  Google Scholar 

  4. UNSCEAR 2012: Report to the General Assembly, with Scientific Annex “Biological Mechanism of Radiation Action at Low Doses, New York: United Nations, 2012.

  5. BEIR VII Report 2006, phase 2: Health Risks from Exposure to Low Levels of Ionizing Radiation, Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation, National Research Council.

  6. Dauer, L.T., Brooks, A.L., Noel, D.G., et al., Review and evaluation of updated researches on the health effects associated with low-dose ionizing radiation, Radiat. Prot. Dosim., 2010, vol. 140, no. 2, pp. 103–136.

    Article  CAS  Google Scholar 

  7. Patrusheva, N.V. and Doshchenko, V.N., Indicators of physical development in children whose parents worked at radiochemical plant, Byull. Radiat. Med., 1971, no. 1, pp. 107–115.

    Google Scholar 

  8. Voronina, Z.I., Voronin, P.F., Tretyakov, F.D., et al., Some data on physical development of newborns whose parents underwent occupational radiation exposure, Byull. Radiat. Med., 1974, issue 2, no. 4, pp. 115–116.

    Google Scholar 

  9. Voronin, P.F., Voronina, Z.I., Tretyakov, F.D., et al., Assessment of frequency of malformations among the newborns whose parents worked in the nuclear industry, Byull. Radiat. Med., 1974, issue 2, no. 4, pp. 116–117.

    Google Scholar 

  10. Voronina, Z.I., Voronin, P.F., Tretyakov, F.D., et al., Stillbirths among the offspring of nuclear power plant workers, Byull. Radiat. Med., 1974, issue 2, no. 4, pp. 117–118.

    Google Scholar 

  11. Patrusheva, N.V. and Voronin, P.F., Morbidity among the children whose fathers were subjected to occupational irradiation, Byull. Radiat. Med., 1980, no. 1, pp. 30–34.

    Google Scholar 

  12. Buldakov, L.A., Demin, S.N., Koshurnikova, N.A, et al., Radiation safety of the population living in the vicinity of the nuclear plants, At. Energ., 1989, vol. 67, no. 2, pp. 81–83.

    Article  CAS  Google Scholar 

  13. Tretyakov, F.D., Voronina, Z.I., Voronin, P.F., and Demin, S.N., The level and structure of infant mortality in the city, located near nuclear plant, Med. Radiol., 1991, vol. 36, no. 7, pp. 7–10.

    Google Scholar 

  14. Petrushkina, N.P., Koshurnikova, N.A., Okatenko, P.V., et al., Infant and perinatal mortality rates in the cohort of the offspring of Mayak workers, Int. J. Low Radiat., 2006, vol. 2, nos. 3–4, pp. 243–256.

    Google Scholar 

  15. Tel’nov, V.I., Kabirova, N.R., and Okatenko, P.V., Carcinogenic risk among the offspring of fathers subjected to chronic preconception irradiation, in Dvadtsat’ pyat’ let Chernobyl’skoi katastrofy: bezopasnost’ budushchego (Twenty-Five Years after the Chernobyl Disaster: Safety for the Future), (Proc. Int. Conf.), Kiev, 2011, part 1, pp. 220–224.

    Google Scholar 

  16. Koterov, A.N. and Biryukov, A.P., Children of liquidators of the Chernobyl nuclear power plant: 1. Evaluation of the principal possibility to register the radiation effects, Med. Radiol. Radiats. Bezop., 2012, vol. 57, no. 1, pp. 5–21.

    Google Scholar 

  17. Durnev, A.D., Zhanataev, A.K., Shreder, O.V., and Seredina, V.S., Genotoxic events and diseases, Mol. Med., 2013, no. 3, pp. 3–19.

    Google Scholar 

  18. Vorobtsova, I.E., Genetic and somatic effects of ionizing radiation in humans and animals (comparative aspects), Radiats. Biol.: Radioekol., 2002, vol. 42, no. 6, pp. 639–643.

    CAS  Google Scholar 

  19. Bochkov, N.P. and Durnev, A.D., Mutatsionnyi protsess u cheloveka: nasledstvennye bolezni (Mutation Process in Humans: Hereditary Diseases), Moscow: Geotar-Media, 2012.

    Google Scholar 

  20. Dubrova, Yu.E., Radiation and induction of mutations in human germline cells, Radiats. Biol.: Radioekol., 2006, vol. 46, no. 5, pp. 537–546.

    Google Scholar 

  21. Satoh, C., Takahashi, N., Asakawa, J., et al., Genetic analysis of children of atomic bomb survivors, Envirom. Health Perspect, 1996, vol. 104,suppl. 3, pp. 511–519.

    Article  CAS  Google Scholar 

  22. Kodaira, M., Izumi, S., Takahashi, N., and Nakamura, N., No evidence of radiation effect on mutation rates at hypervariable minisatellite loci in the germ cells of atomic bomb survivors, Radiat. Res., 2004, vol. 162, pp. 350–356.

    Article  CAS  PubMed  Google Scholar 

  23. Dubrova, Y.E., Nesterov, V.N., and Krouchinsky, N.G., et al., Human minisatellite mutation rate after the Chernobyl accident, Nature, 1996, vol. 380, pp. 683–686.

    Article  CAS  PubMed  Google Scholar 

  24. Dubrova, Y.E., Nesterov, V.N., Krouchinsky, N.G., et al., Further evidence for elevated human minisatellite mutation rate in Belarus eight years after the Chernobyl accident, Mutat. Res., 1997, vol. 381, pp. 267–278.

    Article  CAS  PubMed  Google Scholar 

  25. Dubrova, Y.E., Grant, G., Chumak, A.A., et al., Elevated minisatellite mutation rate in the post-Chernobyl families from Ukraine, Am. J. Hum. Genet., 2002, vol. 71, pp. 801–809.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Livshits, L.A., Malyarchuk, S.G., Kravchenko, S.A., et al., Children of Chernobyl cleanup workers do not show elevated rates of mutations in minisatellite alleles, Radiat. Res., 2001, vol. 155, pp. 74–80.

    Article  CAS  PubMed  Google Scholar 

  27. Slebos, R.J.C., Little, R.E., Umbach, D.M., et al., Mini- and microsatellite mutations in children from Chernobyl accident clean-up workers, Mutat. Res., 2004, vol. 559, pp. 143–151.

    Article  CAS  PubMed  Google Scholar 

  28. Furitsu, F., Ryo, H., Yeliseeva, K.G., et al., Microsatellite mutations show no increases in the children of the Chernobyl liquidators, Mutat. Res., 2005, vol. 581, pp. 69–82.

    Article  CAS  PubMed  Google Scholar 

  29. Kiuru, A., Auvinen, A., Luokkamaki, M., et al., Hereditary minisatellite mutations among the offspring of Estonian Chernobyl cleanup workers, Radiat. Res., 2003, vol. 159, pp. 651–655.

    Article  CAS  PubMed  Google Scholar 

  30. Ploshchanskaya, O.G., Kozionova, O.S., Akleev, A.V., and Dubrova, Yu.E., Analysis of mutations at minisatellite DNA loci in the Techa River Population, in Khronicheskoe radiatsionnoe vozdeistvie: mediko-biologicheskie effekty (Chronic Radiation Exposure: Medical and Biological Effects), (Proc. 3rd Int. Symp.), Chelyabinsk, 2005, p. 95.

    Google Scholar 

  31. Dubrova, Y.E., Bersimbaev, R.I., Djansugurova, L.B., et al., Nuclear weapons tests and human germline mutation rate, Science, 2002, vol. 295, p. 1037.

    Article  CAS  PubMed  Google Scholar 

  32. Shaikhaev, G.O., Kuz’mina, N.S., Myazin, A.E., et al., The analysis of mutations at miniand microsatellite DNA loci in the family members of a group of occupationally exposed to tritium and tritium oxide plant workers, Radiats. Biol.: Radioekol., 2009, vol. 48, no. 6, pp. 690–697.

    Google Scholar 

  33. Tel’nov, V.I., Evaluation of mutation rate in the germ cells of humans exposed to radiation (review of the literature and private data), Vopr. Radiats. Bezop., 1999, no. 4, pp. 59–65.

    Google Scholar 

  34. Bezlepkin, V.G., Kirillova, E.N., Zakharova, M.L., et al., Delayed and transgenerational molecular and genetic effects of prolonged influence of ionizing radiation in nuclear plant workers, Radiats. Biol.: Radioekol., 2011, vol. 51, no. 1, pp. 20–32.

    CAS  Google Scholar 

  35. Vergnaud, G. and Denoeud, F., Minisatellites: mutability and genome architecture, Genome Res., 2000, no. 10, pp. 899–907.

    Google Scholar 

  36. Jeffreys, A.J., Tamaki, K., and MacLeod, A., et al., Complex gene conversion events in germline mutation at human minisatellites, Nat. Genet., 1994, vol. 6, pp. 136–145.

    Article  CAS  PubMed  Google Scholar 

  37. Buard, J., Shone, A.C., and Jeffreys, A.J., Meiotic recombination and flanking marker exchange at the highly unstable human minisatellite CEB1 (D2S90), Am. J. Hum. Genet., 2000, vol. 67, no. 2, pp. 334–344.

    Article  Google Scholar 

  38. Rusinova, G.G. and Tel’nov, V.I., A DNA bank of irradiated people and the members of their families: prospects for molecular genetic studies, Med. Radiol. Radiats. Bezop., 2005, vol. 50, no. 6, pp. 33–40.

    CAS  Google Scholar 

  39. Rusinova, G.G., Glazkova, I.V., Gur’yanov, M.Yu., and Azizova, T.V., A DNA bank of irradiated people and the members of their families: motives for creating, Med. Ekstremalnykh Situatsii, 2010, no. 1, pp. 93–100.

    Google Scholar 

  40. Azizova, T.V., Sumina, M.V., Belyaeva, Z.D., et al., The structure and characteristics of the “Clinic” medical and dosimetric database, Vopr. Radiats. Bezop., 2006, special issue 2, pp. 55–65.

    Google Scholar 

  41. Technical instruction to the Long PCR System kit, Thermo Scientific Corporation, 2006.

  42. Bouffler, S.D., Bridges, B.A., Cooper, D.N., et al., Assessing radiation-associated mutational risk to the germline: repetitive DNA sequences as mutational targets and biomarkers, Radiat. Res., 2006, no. 165, pp. 249–268.

    Google Scholar 

  43. Borovikov, V., STATISTICA: Iskusstvo analiza dannykh na komp’yutere dlya professionalov (STATISTICA: The Art of Computer Data Analysis for Professionals), St. Petersburg: Piter, 2003.

    Google Scholar 

  44. Aivazyan, S.A., Prikladnaya statistika (Applied Statistics), Moscow: Finansy i Statistika, 1983, vol. 1.

  45. Johnson, N.L., Kots, S., and Balakrishnyan, N., Continuous Univariate Distributions, New York: Wiley, 1995, vol. 1, 2nd ed.

    Google Scholar 

  46. Koterov, A.N., The history of ideas about the genome instability at low doses of radiation: the scientific point is probably set, Med. Radiol. Radiats. Bezop., 2014, vol. 59, no. 1, pp. 5–19.

    Google Scholar 

  47. Hemleben, V., Beridze, T., Bachmann, L., et al., Satellite DNAs, Usp. Biol. Khim., 2003, vol. 43, pp. 267–306.

    CAS  Google Scholar 

  48. Hannan, A.J., Tandem repeat polymorphisms: mediators of genetic plasticity, modulators of biological diversity and dynamic sources of disease susceptibility, Adv. Exp. Med. Biol., 2012, vol. 769, pp. 1–9.

    Article  PubMed  Google Scholar 

  49. Sasina, L.K., Slonimskaya, N.A., Suchkova, I.O., et al., Human intra-intronic minisatellite UPS29 associated with neurological diseases regulates reporter gene EGFP expression depending on cell type, Tsitologiya, 2010, vol. 52, no. 9, pp. 715–723.

    CAS  Google Scholar 

  50. Bianchi, M., Crinelli, R., Giacomini, E., et al., A potent enhancer element in the 5b-UTR intron is crucial for transcriptional regulation of the human ubiquitin C gene, Gene, 2009, vol. 448, pp. 88–101.

    Article  CAS  PubMed  Google Scholar 

  51. Georges, A.B., Benayoun, B.A., Caburet, S., and Veitia, R.A., Generic binding sites, generic DNA-binding domains: where does specific promoter recognition come from?, FASEB J., 2010, vol. 24, no. 2, pp. 346–356.

    Article  CAS  PubMed  Google Scholar 

  52. Piazza, A., Serero, A., Boule, J.-B., et al., Stimulation of gross chromosomal rearrangements by the human CEB1 and CEB25 minisatellites in Saccharomyces cerevisiae depends on G-quadruplexesor Cdc13, PLoS Genet., vol. 8, no. 11. e1003033. doi:10.1371/journal.pgen.1003033

  53. Xia, X., Rui, R., Quan, S., et al., MNS16A tandem repeats minisatellite of human telomerase gene and cancer risk: a meta-analysis, PLoS One, 2013, vol. 8, no. 8. e73367. doi:10.1371/journal.pone.0073367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Haddley, K., Vasiliou, A.S., Ali, F.R., et al., Molecular genetics of monoaminotransporters: relevance to brain disorders, Neurochem. Res., 2008, vol. 33, pp. 652–667.

    Article  CAS  PubMed  Google Scholar 

  55. Hannan, A.J., Tandem repeat polymorphisms: modulators of disease susceptibility and candidates for missing heritability, Trends Genet., 2010, vol. 26, pp. 59–65.

    Article  CAS  PubMed  Google Scholar 

  56. Niwa, O. and Kominami, R., Untargeted mutation of the maternally derived mouse hypervariable minisatellite allele in Fl mice born to irradiated spermatozoa, Proc. Natl. Acad. Sci. U.S.A., 2001, no. 98, pp. 1705–1710.

    Google Scholar 

  57. Marchetti, F., Essers, J., Kanaar, R., and Wyrobek, A.J., Disruption of maternal DNA repair increases spermderived chromosomal aberrations, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 45, pp. 17725–17729.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Hatch, T., Derijck, A.A., Black, P.D., et al., Maternal effects of the scid mutation on radiation-induced trans-generational instability in mice, Oncogene, 2007, vol. 26, no. 32, pp. 4720–4724.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Rusinova.

Additional information

Original Russian Text © G.G. Rusinova, I.V. Glazkova, T.V. Azizova, S.V. Osovets, N.S. Vyazovskaya, 2014, published in Genetika, 2014, Vol. 50, No. 11, pp. 1354–1362.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rusinova, G.G., Glazkova, I.V., Azizova, T.V. et al. Analysis of genome instability in offspring of Mayak workers’ families: Minisatellite CEB. Russ J Genet 50, 1200–1207 (2014). https://doi.org/10.1134/S102279541411012X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279541411012X

Keywords

Navigation