Skip to main content
Log in

novE and novG act as positive regulators of novobiocin biosynthesis

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The biosynthetic gene cluster of the aminocoumarin antibiotic novobiocin contains two putative regulatory genes, i.e., novE and novG. Functional proof for the role of NovG as a positive regulator of novobiocin biosynthesis had been provided previously, and we now investigated the role of novE. Heterologous expression experiments with the novobiocin biosynthetic gene cluster showed that the entire putative promoter region of novE is required to achieve optimal novobiocin production. Overexpression of novE, using a replicative vector, resulted in an increase of novobiocin formation. In contrast, inactivation of novE by in frame deletion resulted in a strong reduction of novobiocin biosynthesis. Novobiocin production could be restored by an intact copy of novE, but also by the regulatory gene novG. These observations suggest that novE is a positive regulator of novobiocin biosynthesis. NovE was expressed in E. coli and purified. However, in contrast to parallel experiments with NovG, no DNA-binding properties could be shown for NovE. RT-PCR experiments showed that expression of novG was detectable in the absence of NovE, and also that expression of novE occurred in absence of NovG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, DE Harris, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O′Neil S, Rabbinowitsch E, Rajream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    Article  PubMed  Google Scholar 

  • Chandra G, Chater KF (2008) Evolutionary flux of potentially bldA-dependent Streptomyces genes containing the rare leucine codon TTA. Antonie Van Leeuwenhoek 148(Pt3):643–656

    Google Scholar 

  • Chater KF, Chandra G (2008) The use of the rare UUA codon to define “expression space” for genes involved in secondary metabolism, development and environmental adaptation in Streptomyces. J Microbiol 46:1–11

    Article  PubMed  CAS  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  PubMed  CAS  Google Scholar 

  • Doumith M, Weingarten P, Wehmeier UF, Salah-Bey K, Benhamou B, Capdevila C, Michel JM, Piepersberg W, Raynal MC (2000) Analysis of genes involved in 6-deoxyhexose biosynthesis and transfer in Saccharopolyspora erythraea. Mol Gen Genet 264:477–485

    Article  PubMed  CAS  Google Scholar 

  • Eustáquio AS, Luft T, Wang ZX, Gust B, Chater KF, Li S-M, Heide L (2003) Novobiocin biosynthesis: inactivation of the putative regulatory gene novE and heterologousexpression of genes involved in aminocoumarin ring formation. Arch Microbiol 180:25–32

    Article  PubMed  Google Scholar 

  • Eustáquio AS, Gust B, Li SM, Pelzer S, Wohlleben W, Chater KF, Heide L (2004) Production of 8′-halogenated and 8′-unsubstituted novobiocin derivatives in genetically engineered Streptomyces coelicolor strains. Chem Biol 11:1561–1572

    Article  PubMed  Google Scholar 

  • Eustáquio AS, Gust B, Galm U, Li S-M, Chater KF, Heide L (2005a) Heterologous expression of novobiocin and clorobiocin biosynthetic gene clusters. Appl Environ Microbiol 71:2452–2459

    Article  PubMed  Google Scholar 

  • Eustáquio AS, Li S-M, Heide L (2005b) NovG, a DNA-binding protein acting as a positive regulator of novobiocin biosynthesis. Microbiology 151:1949–1961

    Article  PubMed  Google Scholar 

  • Floriano B, Bibb M (1996) afsR is a pleiotropic but conditionally required regulatory gene for antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol 21:385–396

    Article  PubMed  CAS  Google Scholar 

  • Gramajo HC, Takano E, Bibb MJ (1993) Stationary-phase production of the antibiotic actinorhodin in Streptomyces coelicolor A3(2) is transcriptionally regulated. Mol Microbiol 7:837–845

    Article  PubMed  CAS  Google Scholar 

  • Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci USA 100:1541–1546

    Article  PubMed  CAS  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics, 2nd edn. John Innes Foundation, Norwich

    Google Scholar 

  • Kominek LA (1972) Biosynthesis of novobiocin by Streptomyces niveus. Antimicrob Agents Chemother 1:123–134

    PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Leskiw BK, Bibb MJ, Chater KF (1991) The use of a rare codon specifically during development? Mol Microbiol 5:2861–2867

    Article  PubMed  CAS  Google Scholar 

  • Li S-M, Heide L (2004) Functional analysis of biosynthetic genes of aminocoumarins and production of hybrid antibiotics. Curr Med Chem Anti-Infect Agents 3:279–295

    Article  CAS  Google Scholar 

  • Li S-M, Heide L (2005) New aminocoumarin antibiotics from genetically engineered Streptomyces strains. Curr Med Chem 12:419–427

    PubMed  CAS  Google Scholar 

  • MacNeil DJ, Gewain KM, Ruby CL, Dezeny G, Gibbons PH, MacNeil T (1992) Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111:61–68

    Article  PubMed  CAS  Google Scholar 

  • Maxwell A (1999) DNA gyrase as a drug target. Biochem Soc Trans 27:48–53

    PubMed  CAS  Google Scholar 

  • Peschke U, Schmidt H, Zhang HZ, Piepersberg W (1995) Molecular characterization of the lincomycin-production gene cluster of Streptomyces lincolnensis 78-11. Mol Microbiol 16:1137–1156

    Article  PubMed  CAS  Google Scholar 

  • Pojer F, Li S-M, Heide L (2002) Molecular cloning and sequence analysis of the clorobiocin biosynthetic gene cluster: new insights into the biosynthesis of aminocoumarin antibiotics. Microbiology 148:3901–3911

    PubMed  CAS  Google Scholar 

  • Retzlaff L, Distler J (1995) The regulator of streptomycin gene expression, StrR, of Streptomyces griseus is a DNA binding activator protein with multiple recognition sites. Mol Microbiol 18:151–162

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning. A laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Shawky RM, Puk O, Wietzorrek A, Pelzer S, Takano E, Wohlleben W, Stegmann E (2007) The border sequence of the balhimycin biosynthesis gene cluster from Amycolatopsis balhimycina contains bbr, encoding a StrR-like pathway-specific regulator. J Mol Microbiol Biotechnol 13:76–88

    Article  PubMed  CAS  Google Scholar 

  • Sheldon PJ, Busarow SB, Hutchinson CR (2002) Mapping the DNA-binding domain and target sequences of the Streptomyces peucetius daunorubicin biosynthesis regulatory protein, DnrI. Mol Microbiol 44:449–460

    Article  PubMed  CAS  Google Scholar 

  • Steffensky M, Li S-M, Heide L (2000a) Cloning, overexpression, and purification of novobiocic acid synthetase from Streptomyces spheroides NCIMB 11891. J Biol Chem 275:21754–21760

    Article  PubMed  CAS  Google Scholar 

  • Steffensky M, Mühlenweg A, Wang ZX, Li S-M, Heide L (2000b) Identification of the novobiocin biosynthetic gene cluster of Streptomyces spheroides NCIB 11891. Antimicrob Agents Chemother 44:1214–1222

    Article  PubMed  CAS  Google Scholar 

  • Stutzman-Engwall KJ, Otten SL, Hutchinson CR (1992) Regulation of secondary metabolismin Streptomyces spp. and overproduction of daunorubicin in Streptomyces peucetius. J Bacteriol 174:144–154

    PubMed  CAS  Google Scholar 

  • Vara J, Lewandowska-Skarbek M, Wang YG, Donadio S, Hutchinson CR (1989) Cloning of genes governing the deoxysugar portion of the erythromycin biosynthesis pathway in Saccharopolyspora erythraea (Streptomyces erythreus). J Bacteriol 171:5872–5881

    PubMed  CAS  Google Scholar 

  • Wang ZX, Li S-M, Heide L (2000) Identification of the coumermycin A1 biosynthetic gene cluster of Streptomyces rishiriensis DSM 40489. Antimicrob Agents Chemother 44:3040–3048

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the European Commission (IP 005224 ActinoGEN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Heide.

Additional information

Communicated by Jean-Luc Pernodet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dangel, V., Eustáquio, A.S., Gust, B. et al. novE and novG act as positive regulators of novobiocin biosynthesis. Arch Microbiol 190, 509–519 (2008). https://doi.org/10.1007/s00203-008-0396-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-008-0396-0

Keywords

Navigation