Advertisement

Nonlinear finite element modeling of vibration control of plane rod-type structural members with integrated piezoelectric patches

  • Jacek Chróścielewski
  • Rüdiger Schmidt
  • Victor A. Eremeyev
Open Access
Original Article
  • 73 Downloads

Abstract

This paper addresses modeling and finite element analysis of the transient large-amplitude vibration response of thin rod-type structures (e.g., plane curved beams, arches, ring shells) and its control by integrated piezoelectric layers. A geometrically nonlinear finite beam element for the analysis of piezolaminated structures is developed that is based on the Bernoulli hypothesis and the assumptions of small strains and finite rotations of the normal. The finite element model can be applied to static, stability, and transient analysis of smart structures consisting of a master structure and integrated piezoelectric actuator layers or patches attached to the upper and lower surfaces. Two problems are studied extensively: (i) FE analyses of a clamped semicircular ring shell that has been used as a benchmark problem for linear vibration control in several recent papers are critically reviewed and extended to account for the effects of structural nonlinearity and (ii) a smart circular arch subjected to a hydrostatic pressure load is investigated statically and dynamically in order to study the shift of bifurcation and limit points, eigenfrequencies, and eigenvectors, as well as vibration control for loading conditions which may lead to dynamic loss of stability.

Keywords

Smart structures Plane rod-type structural members Structural nonlinearity Vibration control Stability control 

Notes

References

  1. 1.
    Robbins, D.H., Reddy, J.N.: Analysis of piezoelectrically actuated beams using a layer-wise displacement theory. Comput. Struct. 41, 265–279 (1991)zbMATHGoogle Scholar
  2. 2.
    Krommer, M.: On the correction of the Bernoulli–Euler beam theory for smart piezoelectric beams. Smart Mater. Struct. 10(4), 668 (2001)ADSGoogle Scholar
  3. 3.
    Maurini, C., dell’Isola, F., Pouget, J.: On models of layered piezoelectric beams for passive vibration control. J. Phys. IV 115, 307–316 (2004)zbMATHGoogle Scholar
  4. 4.
    Maurini, C., Pouget, J., dell’Isola, F.: On a model of layered piezoelectric beams including transverse stress effect. Int. J. Solids Struct. 41(16), 4473–4502 (2004)zbMATHGoogle Scholar
  5. 5.
    dell’Isola, F., Rosa, L.: Almansi-type boundary conditions for electric potential inducing flexure in linear piezoelectric beams. Contin. Mech. Thermodyn. 9(2), 115–125 (1997)ADSMathSciNetzbMATHGoogle Scholar
  6. 6.
    Mindlin, R.D.: Forced thickness-shear and flexural vibrations of piezoelectric crystal plates. J. Appl. Phys. 23(1), 83–88 (1952)ADSMathSciNetzbMATHGoogle Scholar
  7. 7.
    Lee, C.-K.: Piezoelectric laminates: theory and experiments for distributed sensors and actuators. In: Tzou, H.S., Anderson, G.L. (eds.) Intelligent Structural Systems, pp. 75–167. Kluwer Academic Publishers, Dordrecht-Boston-London (1992)Google Scholar
  8. 8.
    Yang, J.S., Batra, R.C., Liang, X.Q.: The cylindrical bending vibration of a laminated elastic plate due to piezoelectric actuators. Smart Mater. Struct. 3, 1–9 (1994)Google Scholar
  9. 9.
    Ghosh, K., Batra, R.C.: Shape control of plates using piezoceramic elements. AIAA J. 33, 1354–1357 (1995)ADSGoogle Scholar
  10. 10.
    Carrera, E.: An improved Reissner–Mindlin-type model for the electromechanical analysis of multilayered plates including piezo-layers. J. Intell. Mater. Syst. Struct. 8(3), 232–248 (1997)Google Scholar
  11. 11.
    Carrera, E., Boscolo, M.: Classical and mixed finite elements for static and dynamic analysis of piezoelectric plates. Int. J. Numer. Meth. Eng. 70, 1135–1181 (2007)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Maurini, C., Pouget, J., dell’Isola, F.: Extension of the Euler–Bernoulli model of piezoelectric laminates to include 3D effects via a mixed approach. Comput. Struct. 84(22), 1438–1458 (2006)Google Scholar
  13. 13.
    Alessandroni, S., Andreaus, U., dell’Isola, F., Porfiri, M.: Piezo-electromechanical (PEM) Kirchhoff–Love plates. Eur. J. Mech.-A/Solids 23(4), 689–702 (2004)zbMATHGoogle Scholar
  14. 14.
    Rosi, G., Pouget, J., dell’Isola, F.: Control of sound radiation and transmission by a piezoelectric plate with an optimized resistive electrode. Eur. J. Mech.-A/Solids 29(5), 859–870 (2010)ADSMathSciNetGoogle Scholar
  15. 15.
    Rogacheva, N.N.: Equations of state of piezoceramic shells. J. Appl. Math. Mech. 45(5), 677–684 (1981)zbMATHGoogle Scholar
  16. 16.
    Rogacheva, N.: The Theory of Piezoelectric Plates and Shells, p. 260. CRC Press, Boca Raton (1994)Google Scholar
  17. 17.
    Le, K.C.: An asymptotically exact theory of functionally graded piezoelectric shells. Int. J. Eng. Sci. 112, 42–62 (2017)MathSciNetGoogle Scholar
  18. 18.
    Vetyukov, Y., Staudigl, E., Krommer, M.: Hybrid asymptotic–direct approach to finite deformations of electromechanically coupled piezoelectric shells. Acta Mech. 229(2), 953–974 (2018)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Kulikov, G.M., Plotnikova, S.V.: Exact electroelastic analysis of functionally graded piezoelectric shells. Int. J. Solids Struct. 51(1), 13–25 (2014)Google Scholar
  20. 20.
    Lammering, R.: The application of finite shell element for composites containing piezo-electric polymers in vibration control. Comput. Struct. 41, 1101–1109 (1991)zbMATHGoogle Scholar
  21. 21.
    Tzou, H.S., Tseng, C.I.: Distributed vibration control and identification of coupled elastic/piezoelectric systems: Finite element formulation and application. Mech. Syst. Signal Process. 5, 215–231 (1991)ADSGoogle Scholar
  22. 22.
    Tzou, H.S.: Piezoelectric Shells—Distributed Sensing and Control of Continua. Kluwer Academic Publishers, Dordrecht-Boston-London (1993)Google Scholar
  23. 23.
    Tzou, H.S., Ye, R.: Analysis of piezoelastic structures with laminated piezoelectric triangle shell elements. AIAA J. 34, 110–115 (1996)ADSzbMATHGoogle Scholar
  24. 24.
    Carrera, E.: Historical review of Zig-Zag theories for multilayered plates and shells. Appl. Mech. Rev. 56(2), 287–308 (2003)ADSGoogle Scholar
  25. 25.
    Carrera, E., Giunta, G., Petrolo, M.: Beam Structures: Classical and Advanced Theories. Wiley, Chichester (2011)zbMATHGoogle Scholar
  26. 26.
    Carrera, E., Brischetto, S., Nali, P.: Plates and Shells for Smart Structures: Classical and Advanced Theories for Modelling and Analysis. Wiley, Chichester (2011)zbMATHGoogle Scholar
  27. 27.
    Naumenko, K., Eremeyev, V.A.: A layer-wise theory for laminated glass and photovoltaic panels. Compos. Struct. 112, 283–291 (2014)Google Scholar
  28. 28.
    Naumenko, K., Eremeyev, V.A.: A layer-wise theory of shallow shells with thin soft core for laminated glass and photovoltaic applications. Compos. Struct. 178, 434–446 (2017)Google Scholar
  29. 29.
    Icardi, U., Di Sciuva, M.: Large-deflection and stress analysis of multilayered plates with induced-strain actuators. Smart Mater. Struct. 5, 140–164 (1996)ADSGoogle Scholar
  30. 30.
    Mukherjee, A., Chaudhuri, A.S.: Piezolaminated beams with large deformations. Int. J. Solids Struct. 39, 4567–4582 (2002)zbMATHGoogle Scholar
  31. 31.
    Lentzen, S., Schmidt, R.: Nonlinear finite element modelling of composite structures with integrated piezoelectric layers. In: Brebbia, C.A., de Wilde, W.P. (eds.) High Performance Structures and Materials II, pp. 67–76. WIT Press, Southampton-Boston (2004)Google Scholar
  32. 32.
    Lentzen, S., Schmidt, R.: Simulation of sensor application and shape control of piezoelectric structures at large deflections. In: Atluri, S.N., Tadeu, A.J.B. (eds.) Advances in Computational & Experimental Engineering & Science, pp. 439–444. Tech Science Press, Encino (2004)Google Scholar
  33. 33.
    Lentzen, S., Schmidt, R.: Nonlinear shape control simulation of piezolaminated plates and shells. In: Yao, Z.H., Yuan, M.W., Zhong, W.X. (eds.) Computational Mechanics, Proceedings of the Sixth International Congress of Computational Mechanics, Beijing, China, vol. 2, paper R-304, Tsinghua University Press/Springer-Verlag (2004)Google Scholar
  34. 34.
    Lentzen, S., Schmidt, R.: On piezoelectric actuator layers in plates and shells at large deflections. In: Yang, W. (ed.) IUTAM Symposium “Mechanics and Reliability of Actuating Materials”, Beijing, China, 1–3 September 2004, 154–163. Springer, Dordrecht (2006)Google Scholar
  35. 35.
    Lentzen, S., Schmidt, R.: Nonlinear FE-simulation of piezolaminated plates and shells. In: Iyengar, N.G.R., Kumar, A. (eds.) Proceedings, International Congress on Computational Mechanics & Simulation, vol. I, pp. 77–85. Indian Institute of Technology Kanpur (2004)Google Scholar
  36. 36.
    Vu, T.D., Lentzen, S., Schmidt, R.: Geometrically nonlinear FE-analysis of piezolaminated plates based on first- and third-order shear deformation theory. In: Son, N.K., Cat, P.T., Tuan, P.A. (eds.) Proceedings of the 8 th International Conference on Mechatronics Technology, ICMT 2004, Hanoi, Vietnam, 8–12 November 2004, pp. 267–272. Vietnam National University Publisher, Hanoi (2004)Google Scholar
  37. 37.
    Nguyen, Q.D., Lentzen, S., Schmidt, R.: A geometrically nonlinear third-order shear deformation finite plate element incorporating piezoelectric layers. In: Son, N.K., Cat, P.T., Tuan, P.A. (eds.) Proceedings of the 8 th International Conference on Mechatronics Technology, ICMT 2004, Hanoi, Vietnam, 8–12 November 2004, pp. 303–308/ Vietnam National University Publisher, Hanoi (2004)Google Scholar
  38. 38.
    Zhang, S.Q., Chen, M., Zhao, G.Z., Wang, Z.X., Schmidt, R., Qin, X.S.: Modeling techniques for active shape and vibration control of macro-fiber composite laminated structures. Smart Struct. Syst. 19(6), 633–641 (2017)Google Scholar
  39. 39.
    Zhang, S.Q., Wang, Z.X., Qin, X.S., Zhao, G.Z., Schmidt, R.: Geometrically nonlinear analysis of composite laminated structures with multiple macro-fiber composite (MFC) actuators. Compos. Struct. 150, 62–72 (2016)Google Scholar
  40. 40.
    Zhang, S.Q., Schmidt, R., Müller, P.C., Qin, X.S.: Disturbance rejection control for vibration suppression of smart beams and plates under a high frequency excitation. J. Sound Vib. 353, 19–37 (2015)ADSGoogle Scholar
  41. 41.
    Zhang, S.Q., Li, H.N., Schmidt, R., Müller, P.C.: Disturbance rejection control for vibration suppression of piezoelectric laminated thin-walled structures. J. Sound Vib. 333(5), 1209–1223 (2014)ADSGoogle Scholar
  42. 42.
    Zhang, S.Q., Li, Y.X., Schmidt, R.: Active shape and vibration control for piezoelectric bonded composite structures using various geometric nonlinearities. Compos. Struct. 1(122), 239–249 (2015)Google Scholar
  43. 43.
    Krishna, M.R.M., Mei, C.: Finite element buckling and post-buckling analyses of a plate with piezoelectric actuator. In: Rogers, C.A., Rogers, R.C. (eds.) Proceedings of the Conference on Recent Advances in Adaptive and Sensory Materials and Their Applications, Virginia Polytechnic Institute and State University, Blacksburg, 1992, pp. 301–313. Technomic Publishing Company Inc, Lancaster, Pennsylvania (1992)Google Scholar
  44. 44.
    Chandrashekhara, K., Bhatia, K.: Active buckling control of smart composite plates—finite-element analysis. Smart Mater. Struct. 2, 31–39 (1993)ADSGoogle Scholar
  45. 45.
    Wang, Q., Varadan, V.K.: Transition of the buckling load of beams by the use of piezoelectric layers. Smart Mater. Struct. 12, 696–702 (2003)ADSGoogle Scholar
  46. 46.
    Chróscielewski, J., Klosowski, P., Schmidt, R.: Theory and numerical simulation of nonlinear vibration control of arches with piezoelectric distributed actuators. Mach. Dyn. Probl. 20, 73–90 (1998)Google Scholar
  47. 47.
    Lentzen, S., Schmidt, R.: Geometrically nonlinear composite shells with integrated piezoelectric layers. Proc. Appl. Math. Mech. 4, 63–66 (2004)zbMATHGoogle Scholar
  48. 48.
    Tzou, H.S., Bao, Y., Ye, R.: In: Hagood, N.W. (ed.) Smart Structures and Materials 1994: Smart Structures and Intelligent Systems, Proceeding of SPIE, vol. 2190, pp. 206–214 (1994)Google Scholar
  49. 49.
    Pai, P.F., Nayfeh, A.H., Oh, K., Mook, D.T.: A refined nonlinear model of composite plates with integrated piezoelectric actuators and sensors. Int. J. Solids Struct. 30, 1603–1630 (1993)zbMATHGoogle Scholar
  50. 50.
    Reddy, J.N.: On laminated composite plates with integrated sensors and actuators. Eng. Struct. 21, 568–593 (1999)Google Scholar
  51. 51.
    Oh, I.-K., Han, J.-H., Lee, I.: Postbuckling and vibration characteristics of piezolaminated composite plate subject to thermo-piezoelectic loads. J. Sound Vib. 233, 19–40 (2000)ADSzbMATHGoogle Scholar
  52. 52.
    Oh, I.-K., Han, J.-H., Lee, I.: Thermopiezoelastic snapping of piezolaminated plates using layerwise nonlinear finite elements. AIAA J. 39, 1188–1197 (2001)ADSGoogle Scholar
  53. 53.
    Yi, S., Ling, S.F., Ying, M.: Large deformation finite element analyses of composite structures integrated with piezoelectric sensors and actuators. Finite Elem. Anal. Des. 35, 1–15 (2000)zbMATHGoogle Scholar
  54. 54.
    Mukherjee, A., Chaudhuri, A.S.: Nonlinear dynamic response of piezolaminated smart beams. Comput. Struct. 83, 1289–1304 (2005)Google Scholar
  55. 55.
    Lentzen, S., Schmidt, R.: Nonlinear finite element modeling of vibration control of piezolaminated composite plates and shells. In: Wang, K.-W. (ed.) Smart Structures and Materials 2005: Damping and Isolation, Proceedings of SPIE, vol. 5760, Paper 5760-16, SPIE, Bellingham, WA, USA (2005)Google Scholar
  56. 56.
    Lentzen, S., Schmidt, R.: A geometrically nonlinear finite element for transient analysis of piezolaminated shells. In: van Campen, D.H., Lazurko, M.D., van den Oever, W.P.J.M. (eds.) Proceedings Fifth EUROMECH Nonlinear Dynamics Conference, Eindhoven, The Netherlands, 7–12 August 2005, pp. 2492–2500. Eindhoven University of Technology (2005)Google Scholar
  57. 57.
    Lentzen, S., Schmidt, R.: Large amplitude vibrations and modal sensing of intelligent thin piezolaminated structures. In: Soize, C., Schuëller, G.I. (eds.) EURODYN 2005, Proceedings of the 6th European Conference on Structural Dynamics, Paris, France, 4–7 September 2005, pp. 1569–1574, Millpress, Rotterdam (2005)Google Scholar
  58. 58.
    Lentzen, S., Schmidt, R.: Nonlinear transient analysis, vibration control and modal sensing of smart piezolaminated shells. In: Sivakumar, S.M., Meher Prasad, A., Dattaguru, B., Narayanan, S., Rajendran, A.M., Atluri, S.N. (eds.) Advances in Computational & Experimental Engineering and Science, pp. 2062–2067. Tech Science Press, Encino, California, USA (2005)Google Scholar
  59. 59.
    Zhang, S.Q., Schmidt, R.: Static and dynamic FE analysis of piezoelectric integrated thin-walled composite structures with large rotations. Compos. Struct. 112, 345–357 (2014)Google Scholar
  60. 60.
    Rao, J.N., Lentzen, S., Schmidt, R.: Genetically optimised placement of piezoelectric sensor arrays: linear and nonlinear transient analysis. In: Brebbia, C.A. (ed.) High-Performance Structures and Materials III, pp. 653–661. WIT Press, Southampton-Boston (2006)Google Scholar
  61. 61.
    Shi, G., Atluri, S.N.: Active control of nonlinear dynamic response of space-frames using piezo-electric actuators. Comput. Struct. 34, 549–564 (1990)zbMATHGoogle Scholar
  62. 62.
    Lee, S.-W., Beale, D.G.: Active control of nonlinear oscillations in a flexible rod slider crank mechanism. In: Burdisso, R.A. (ed.) Proceedings of the Second Conference on Recent Advances in Active Control of Sound and Vibration, Virginia Polytechnic Institute and State University, Blacksburg, 1993, pp. 729–740. Technomic Publishing Company Inc, Lancaster, Pennsylvania (1993)Google Scholar
  63. 63.
    Zhou, Y.-H., Wang, J.: Vibration control of piezoelectric beam-type plates with geometrically nonlinear deformation. Int. J. Non-Linear Mech. 39, 909–920 (2004)ADSzbMATHGoogle Scholar
  64. 64.
    Chróscielewski, J., Klosowski, P., Schmidt, R.: Numerical simulation of geometrically nonlinear flexible beam control via piezoelectric layers. ZAMM 77(Supplement 1), S69–S70 (1997)zbMATHGoogle Scholar
  65. 65.
    Chróscielewski, J., Klosowski, P., Schmidt, R.: Modelling and FE-analysis of large deflection shape and vibration control of structures via piezoelectric layers. In: Gabbert, U. (ed.) Smart Mechanical Systems—Adaptronics, Fortschritt-Berichte VDI, Series 11, No. 244, pp. 53–62. VDI-Verlag, Düsseldorf (1997)Google Scholar
  66. 66.
    Tzou, H.S., Zhou, Y.-H.: Dynamics and control of piezoelectric circular plates with geometrical nonlinearity. J. Sound Vib. 188, 189–207 (1995)ADSGoogle Scholar
  67. 67.
    Tzou, H.S., Zhou, Y.-H.: Nonlinear piezothermoelasticity and multi-field actuation, part 2: control of nonlinear buckling and dynamics. ASME J. Vib. Acoust. 19, 382–389 (1997)Google Scholar
  68. 68.
    Zhou, Y.-H., Tzou, H.S.: Active control of nonlinear piezoelectric spherical shallow shells. Int. J. Solids Struct. 37, 1663–1677 (2000)zbMATHGoogle Scholar
  69. 69.
    Batra, R.C., Liang, X.Q., Kachroo, P.: Shape control of a nonlinear smart plate. In: Varadan, V.V., Chandra, J. (eds.) Smart Structures and Materials 1997: Mathematics and Control in Smart Structures, Proceedings of SPIE, vol. 3039, pp. 518–525 (1997)Google Scholar
  70. 70.
    Batra, R.C., Liang, X.Q.: Finite dynamic deformations of smart structures. Comput. Mech. 20, 427–438 (1997)zbMATHGoogle Scholar
  71. 71.
    Lai, Z., Xue, D.Y., Huang, J.-K., Mei, C.: Nonlinear panel flutter suppression with piezoelectric actuation. In: Burdisso, R.A. (ed.) Proceedings of the Second Conference on Recent Advances in Active Control of Sound and Vibration, Virginia Polytechnic Institute and State University, Blacksburg, 1993, pp. 863–874. Technomic Publishing Company Inc, Lancaster, Pennsylvania (1993)Google Scholar
  72. 72.
    Zhou, R.C., Lai, Z., Xue, D.Y., Huang, J.-K., Mei, C.: Suppression of nonlinear panel flutter with piezoelectric actuators using finite element method. AIAA J. 33, 1098–1105 (1995)ADSzbMATHGoogle Scholar
  73. 73.
    Zhou, R.C., Mei, C., Huang, J.-K.: Suppression of nonlinear panel flutter at supersonic speeds and elevated temperatures. AIAA J. 34, 347–354 (1996)ADSzbMATHGoogle Scholar
  74. 74.
    Shen, J.Y., Sharpe, L., Jr.: A finite element model for the aeroelasticity analysis of hypersonic panels, part III: flutter suppression. In: Varadan, V.V., Chandra, J. (eds.) Smart Structures and Materials 1997: Mathematics and Control in Smart Structures, Proceedings of SPIE, vol. 3039, pp. 315–323 (1997)Google Scholar
  75. 75.
    Zhang, S.Q., Zhao, G.Z., Zhang, S.Y., Schmidt, R., Qin, X.S.: Geometrically nonlinear FE analysis of piezoelectric laminated composite structures under strong driving electric field. Compos. Struct. 1(181), 112–120 (2017)Google Scholar
  76. 76.
    Rao, M.N., Tarun, S., Schmidt, R., Schröder, K.U.: Finite element modeling and analysis of piezo-integrated composite structures under large applied electric fields. Smart Mater. Struct. 25(5), 055044 (2016)ADSGoogle Scholar
  77. 77.
    Xin, L., Hu, Z.: Free vibration of layered magneto-electro-elastic beams by SS-DSC approach. Compos. Struct. 125, 96–103 (2015)Google Scholar
  78. 78.
    Rao, M.N., Schmidt, R., Schröder, K.U.: Geometrically nonlinear static FE-simulation of multilayered magneto-electro-elastic composite structures. Compos. Struct. 127, 120–131 (2015)Google Scholar
  79. 79.
    Giorgio, I., Galantucci, L., Della, Corte A., Del Vescovo, D.: Piezo-electromechanical smart materials with distributed arrays of piezoelectric transducers: current and upcoming applications. Int. J. Appl. Electromagn. Mech. 47(4), 1051–1084 (2015)Google Scholar
  80. 80.
    Andreaus, U., dell’Isola, F., Porfiri, M.: Piezoelectric passive distributed controllers for beam flexural vibrations. JVC/J. Vib. Control, 10(5), 625–659 (2004) .  https://doi.org/10.1177/1077546304038224
  81. 81.
    Alessandroni, S., Andreaus, U., dell’Isola, F., Porfiri, M.: A passive electric controller for multimodal vibrations of thin plates. Comput. Struct. 83(15–16), 1236–1250 (2005).  https://doi.org/10.1016/j.compstruc.2004.08.028 Google Scholar
  82. 82.
    Giorgio, I., Culla, A., Del Vescovo, D.: Multimode vibration control using several piezoelectric transducers shunted with a multiterminal network. Arch. Appl. Mech. 79, 859–879 (2009)ADSzbMATHGoogle Scholar
  83. 83.
    Pagnini, L.C., Piccardo, G.: The three-hinged arch as an example of piezomechanic passive controlled structure. Contin. Mech. Thermodyn. 28, 1247 (2016).  https://doi.org/10.1007/s00161-015-0474-x ADSMathSciNetzbMATHGoogle Scholar
  84. 84.
    D’Annibale, F., Rosi, G., Luongo, A.: On the failure of the ‘similar piezoelectric control’ in preventing the loss of stability caused by nonconservative positional forces. Z. Angew. Math. Phys. 66(4), 1949–1968 (2015)MathSciNetzbMATHGoogle Scholar
  85. 85.
    D’Annibale, F.: Piezoelectric control of the Hopf bifurcation of Ziegler’s column with nonlinear damping. Nonlinear Dyn. 86, 2179 (2016).  https://doi.org/10.1007/s11071-016-2866-2 MathSciNetGoogle Scholar
  86. 86.
    Šilhavý, M.: A direct approach to nonlinear shells with application to surface-substrate interactions. Math. Mech. Complex Syst. 1(2), 211–232 (2013).  https://doi.org/10.2140/memocs.2013.1.211 zbMATHGoogle Scholar
  87. 87.
    Girchenko, A.A., Eremeyev, V.A., Altenbach, H.: Interaction of a helical shell with a nonlinear viscous fluid. Int. J. Eng. Sci. 61, 53–58 (2012)Google Scholar
  88. 88.
    Sze, K.Y., Yao, L.Q.: Modelling smart structures with segmented piezoelectric sensors and actuators. J. Sound Vib. 35, 495–520 (2000)ADSGoogle Scholar
  89. 89.
    Sze, K.Y., Yao, L.Q., Yi, S.: A hybrid stress ANS solid-shell element and its generalization for smart structure modelling. Part II: smart structure modeling. Int. J. Numer. Meth. Eng. 48, 565–582 (2000)zbMATHGoogle Scholar
  90. 90.
    Balamurugan, V., Nayaranan, S.: Active vibration control of smart shells using distributed piezoelectric sensors and actuators. Smart Mater. Struct. 10, 173–180 (2001)ADSGoogle Scholar
  91. 91.
    Nardinocchi, P., Pezzulla, M., Placidi, L.: Thermodynamically based multiphysic modeling of ionic polymer metal composites. J. Intell. Mater. Syst. Struct. 22(16), 1887–1897 (2011)Google Scholar
  92. 92.
    Del Bufalo, G., Placidi, L., Porfiri, M.: A mixture theory framework for modeling the mechanical actuation of ionic polymer metal composites. Smart Mater. Struct. 17(4), 045010 (2008)ADSGoogle Scholar
  93. 93.
    Tiersten, H.F.: Hamilton’s principle for linear piezoelectric media. Proc. IEEE 55(8), 1523–1526 (1967)Google Scholar
  94. 94.
    Allik, H., Hughes, T.J.: Finite element method for piezoelectric vibration. Int. J. Numer. Meth. Eng. 2(2), 151–158 (1970)Google Scholar
  95. 95.
    McMeeking, R.M., Landis, C.M., Jimenez, S.M.: A principle of virtual work for combined electrostatic and mechanical loading of materials. Int. J. Non-Linear Mech. 42(6), 831–838 (2007)ADSGoogle Scholar
  96. 96.
    Abali, B.E.: Computational Reality: Solving Nonlinear and Coupled Problems in Continuum Mechanics. Springer, Singapore (2017)zbMATHGoogle Scholar
  97. 97.
    Lammering, R., Mesecke-Rischmann, S.: Multi-field variational formulations and related finite elements for piezoelectric shells. Smart Mater. Struct. 12(6), 904–913 (2003)ADSGoogle Scholar
  98. 98.
    Belokon, A.V., Eremeyev, V.A., Nasedkin, A.V., Solov’yev, A.N.: Partitioned schemes of the finite-element method for dynamic problems of acoustoelectroelasticity. J. Appl. Math. Mech. 64(3), 367–377 (2000)Google Scholar
  99. 99.
    Nasedkin, A.V., Eremeyev, V.A.: Harmonic vibrations of nanosized piezoelectric bodies with surface effects. ZAMM 94(10), 878–892 (2014)ADSMathSciNetzbMATHGoogle Scholar
  100. 100.
    Eremeyev, V.A., Nasedkin, A.V.: Mathematical models and finite element approaches for nanosized piezoelectric bodies with uncoulped and coupled surface effects. In: Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials, pp. 1–18. Springer, Singapore (2017)Google Scholar
  101. 101.
    Abali, B.E., Reich, F.A.: Thermodynamically consistent derivation and computation of electro–thermo–mechanical systems for solid bodies. Comput. Methods Appl. Mech. Eng. 319, 567–595 (2017)ADSMathSciNetGoogle Scholar
  102. 102.
    Waszczyszyn, Z., Cichoń, Cz, Radwańska, M.: Stability of Structures by Finite Element Methods. Elsevier, Amsterdam (1994)zbMATHGoogle Scholar
  103. 103.
    Riks, E.: On the Numerical Solution of Snapping Problems in the Theory of Elastic Stability, SUDAAR 401. Stanford University, Stanford (1970)Google Scholar
  104. 104.
    Riks, E.: The application of Newton’s method to the problem of elastic stability. Trans. ASME J. Appl. Mech. 39, 1060–1065 (1972)ADSzbMATHGoogle Scholar
  105. 105.
    Wempner, G.: Discrete approximations related to nonlinear theories of solids. Int. J. Solids Struct. 7, 1581–1599 (1971)zbMATHGoogle Scholar
  106. 106.
    Chróścielewski, J., Nolte, L.-P.: Strategien zur Lösung nichtlinearer Probleme der Strukturmechanik und ihre modulare Aufbereitung im Konzept MESY, Mitt. Institut für Mechanik, 48, Ruhr-Universität, Bochum (1985)Google Scholar
  107. 107.
    Chróścielewski, J., Schmidt, R.: A solution control method for nonlinear finite element post-buckling analysis of structures. In: Szabó, J. (ed.) Post-Buckling of Elastic Structures, Proc. of the EUROMECH—Colloquium Nr. 200, Mátrafüred (Hungary), 1985, pp. 19–33. Elsevier Science Publisher B.V., Amsterdam (1986)Google Scholar
  108. 108.
    Cazzani, A., Stochino, F., Turco, E.: An analytical assessment of finite element and isogeometric analyses of the whole spectrum of Timoshenko beams. ZAMM, 96(10), 1220-1244 (2016).  https://doi.org/10.1002/zamm.201500280
  109. 109.
    Cazzani, A., Malagu, M., Turco, E.: Isogeometric analysis of plane-curved beams. Math. Mech. Solids 21(5), 562–577 (2014).  https://doi.org/10.1177/1081286514531265 MathSciNetzbMATHGoogle Scholar
  110. 110.
    Greco, L., Cuomo, M.: B-Spline interpolation of Kirchhoff–Love space rods. Comput. Methods Appl. Mech. Eng. 256, 251–269 (2013)ADSMathSciNetzbMATHGoogle Scholar
  111. 111.
    Alibert, J.-J., Della Corte, A., Giorgio, I., Battista, A.: Extensional Elastica in large deformation as \(\Gamma \)-limit of a discrete 1D mechanical system. ZAMP (2017).  https://doi.org/10.1007/s00033-017-0785-9
  112. 112.
    Chróścielewski, J., Witkowski, W.: Discrepancies of energy values in dynamics of three intersecting plates. Int. J. Numer. Methods Biomed. Eng. 26(9), 1188–1202 (2010)zbMATHGoogle Scholar
  113. 113.
    Witkowski, W., Rucka, M., Chróścielewski, J., Wilde, K.: On some properties of 2D spectral finite elements in problems of wave propagation. Finite Elem. Anal. Des. 55, 31–41 (2012)Google Scholar
  114. 114.
    Chróścielewski, J., Makowski, J., Stumpf, H.: Genuinely resultant shell finite elements accounting for geometric and material non-linearity. Int. J. Numer. Meth. Eng. 35, 63–94 (1992)zbMATHGoogle Scholar
  115. 115.
    Chróścielewski, J., Makowski, J., Stumpf, H.: Finite element analysis of smooth, folded and multi-shell structures. Comput. Meth. Appl. Mech. Eng. 141, 1–46 (1997)zbMATHGoogle Scholar
  116. 116.
    Kuhl, D., Crisfield, M.A.: Energy-conserving algorithms in non-linear structural dynamics. Int. J. Numer. Meth. Eng. 45, 569–599 (1999)MathSciNetzbMATHGoogle Scholar
  117. 117.
    Chróścielewski, J., Lubowiecka, I., Witkowski, W.: Energy-conserving integration in six-field shell dynamics. In: ICTAM04 Abstract Book and CD-ROM Proceedings, 21st International Congress of Theoretical and Applied Mechanics, Warsaw, Poland, 337 (August 15–21, 2004)Google Scholar
  118. 118.
    Mukherjee, A., Joshi, S.P.: Gradientless technique for optimal distribution of piezoelectric material for structural control. Int. J. Numer. Meth. Eng. 57, 1737–1753 (2003)zbMATHGoogle Scholar
  119. 119.
    Mukherjee, A., Joshi, S.P.: Piezoelectric sensor and actuator spatial design for shape control of piezolaminated plates. AIAA J. 40, 1204–1210 (2002)ADSGoogle Scholar
  120. 120.
    Lentzen, S., Schmidt, R.: Nonlinear dynamics and control of smart piezolaminated plates and shells. In: Proceedings of ICDVC-2006, The Second International Conference on Dynamics, Vibration and Control, Beijing, China, 23–26 August 2006, Paper ICDVC2006-W42, Chinese Academy of Sciences, Beijing (2006)Google Scholar
  121. 121.
    Mukherjee, A., Saha Chaudhuri, A.: Active control of dynamic instability of piezo-laminated imperfect columns. Smart Mater. Struct. 11, 874–879 (2002)ADSGoogle Scholar
  122. 122.
    Mukherjee, A., Saha Chaudhuri, A.: Exact solutions for instability control of piezolaminated imperfect struts. AIAA J. 14, 857–859 (2004)ADSGoogle Scholar
  123. 123.
    Mukherjee, A., Saha Chaudhuri, A.: Active control of piezolaminated columns—exact solutions and experimental validation. Smart Mater. Struct. 14, 475–482 (2005)ADSGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Faculty of Civil and Environmental EngineeringGdańsk University of TechnologyGdańskPoland
  2. 2.Institut für Allgemeine MechanikRWTH Aachen UniversityAachenGermany
  3. 3.Southern Federal UniversityRostov on DonRussia

Personalised recommendations