Theoretical and Applied Genetics

, Volume 130, Issue 2, pp 403–417 | Cite as

General and specific combining abilities in a maize (Zea mays L.) test-cross hybrid panel: relative importance of population structure and genetic divergence between parents

  • A. Larièpe
  • L. Moreau
  • J. Laborde
  • C. Bauland
  • S. Mezmouk
  • L. Décousset
  • T. Mary-Huard
  • J. B. Fiévet
  • A. Gallais
  • P. Dubreuil
  • A. Charcosset
Original Article

Abstract

Key message

General and specific combining abilities of maize hybrids between 288 inbred lines and three tester lines were highly related to population structure and genetic distance inferred from SNP data.

Abstract

Many studies have attempted to provide reliable and quick methods to identify promising parental lines and combinations in hybrid breeding programs. Since the 1950s, maize germplasm has been organized into heterotic groups to facilitate the exploitation of heterosis. Molecular markers have proven efficient tools to address the organization of genetic diversity and the relationship between lines or populations. The aim of the present work was to investigate to what extent marker-based evaluations of population structure and genetic distance may account for general (GCA) and specific (SCA) combining ability components in a population composed of 800 inter and intra-heterotic group hybrids obtained by crossing 288 inbred lines and three testers. Our results illustrate a strong effect of groups identified by population structure analysis on both GCA and SCA components. Including genetic distance between parental lines of hybrids in the model leads to a significant decrease of SCA variance component and an increase in GCA variance component for all the traits. The latter suggests that this approach can be efficient to better estimate the potential combining ability of inbred lines when crossed with unrelated lines, and limits the consequences of tester choice. Significant residual GCA and SCA variance components of models taking into account structure and/or genetic distance highlight the variation available for breeding programs within structure groups.

Keywords

Inbred Line Single Nucleotide Polymorphism Flint General Combine Ability Iodent 

Notes

Acknowledgements

We are grateful to the INRA Saint-Martin de Hinx seed stock center for providing genetic materials used in this study. We are grateful to Euralis, RAGT and Limagrain for providing proprietary materials and production of hybrid seeds. We are grateful to colleagues of the Institut National de la Recherche Agronomique experimental units (Le Moulon, Mons, Lusignan and Saint-Martin de Hinx) and Arvalis (Satolas) for conducting the phenotypic evaluation. We are grateful to Patrick Vincourt and Elisabetta Frascaroli for helpful comments and discussion. Amandine Larièpe was funded partially by ANRT and Biogemma. Alain Charcosset and Laurence Moreau finalized this study in the framework of the AMAIZING research project funded by the French ANR.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical standards

This experiment did not involve animals and respected ethical standards.

Supplementary material

122_2016_2822_MOESM1_ESM.docx (183 kb)
ESM1 (DOCX 184 kb)

References

  1. Ajmone Marsan P, Castiglioni P, Fusari F, Kuiper M, Motto M (1998) Genetic diversity and its relationship to hybrid performance in maize as revealed by RFLP and AFLP markers. Theor Appl Genet 96:219–227CrossRefGoogle Scholar
  2. Bernardo R (1992) Relationship between single-cross performance and molecular marker heterozygosity. Theor Appl Genet 83:628–634CrossRefPubMedGoogle Scholar
  3. Bouchet S, Servin B, Bertin P, Madur D, Combes V, Dumas F, Brunel D, Laborde J, Charcosset A, Nicolas S (2013) Adaptation of maize to temperate climates: mid-density genome-wide association genetics and diversity patterns reveal key genomic regions, with a major contribution of the Vgt2 (ZCN8) locus. PLoS One 8:e71377CrossRefPubMedPubMedCentralGoogle Scholar
  4. Butler D, Cullis BR, Gilmour AR, Gogel BJ (2009) ASReml-R reference manual. The State of Queensland, Department of Primary Industries and FisheriesGoogle Scholar
  5. Camus-Kulandaivelu L, Veyrieras JB, Madur D, Combes V, Fourmann M, Barraud S, Dubreuil P, Gouesnard B, Manicacci D, Charcosset A (2006) Maize adaptation to temperate climate: relationship between population structure and polymorphism in the Dwarf8 gene. Genetics 172:2449–2463CrossRefPubMedPubMedCentralGoogle Scholar
  6. Casa A, Mitchell S, Smith O, Register Iii J, Wessler S, Kresovich S (2002) Evaluation of Hbr (MITE) markers for assessment of genetic relationships among maize (Zea mays L.) inbred lines. Theor Appl Genet 104:104–110CrossRefPubMedGoogle Scholar
  7. Charcosset A, Essioux L (1994) The effect of population structure on the relationship between heterosis and heterozygosity at marker loci. Theor Appl Genet 89:336–343PubMedGoogle Scholar
  8. Charcosset A, Lefort-Buson M, Gallais A (1991) Relationship between heterosis and heterozygosity at marker loci: a theoretical computation. Theor Appl Genet 81:571–575CrossRefPubMedGoogle Scholar
  9. Compton W, Lonnquist C (1965) Genetic variability in two open-pollinated varieties of corn (Zea mays L.) and their F1 progenies1. Crop Sci 5:505–508CrossRefGoogle Scholar
  10. Darwin C (1876) The effects of cross and self fertilization in the vegetable kingdom. John Murray, LondonCrossRefGoogle Scholar
  11. Dhillon B, Gurrath P, Zimmer E, Wermke M, Pollmer W, Klein D (1990) Analysis of diallel crosses of maize for variation and covariation in agronomic traits at silage and grain harvests. Maydica 35:297–302Google Scholar
  12. Dubreuil P, Charcosset A (1999) Relationships among maize inbred lines and populations from European and North-American origins as estimated using RFLP markers. Theor Appl Genet 99:473–480CrossRefPubMedGoogle Scholar
  13. Dubreuil P, Dufour P, Krejci E, Causse M, De Vienne D, Gallais A, Charcosset A (1996) Organization of RFLP diversity among inbred lines of maize representing the most significant heterotic groups. Crop Sci 36:790–799CrossRefGoogle Scholar
  14. Dubreuil P, Warburton M, Chastanet M, Hoisington D, Charcosset A (2006) More on the introduction of temperate maize into Europe: large-scale bulk SSR genotyping and new historical elements. Maydica 51:281–291Google Scholar
  15. Ducrocq S, Madur D, Veyrieras JB, Camus-Kulandaivelu L, Kloiber-Maitz M, Presterl T, Ouzunova M, Manicacci D, Charcosset A (2008) Key Impact of Vgt1 on flowering time adaptation in maize: evidence from association mapping and ecogeographical information. Genetics 178:2433–2437CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dudley J, Saghai Maroof M, Rufener G (1991) Molecular markers and grouping of parents in maize breeding programs. Crop Sci 31:718–723CrossRefGoogle Scholar
  17. Falque M, Décousset L, Dervins D, Jacob AM, Joets J, Martinant JP, Raffoux X, Ribiere N, Ridel C, Samson D (2005) Linkage mapping of 1454 new maize candidate gene loci. Genetics 170:1957–1966CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fischer S, Möhring J, Schön CC, Piepho HP, Klein D, Schipprack W, Utz HF, Melchinger AE, Reif JC (2008) Trends in genetic variance components during 30 years of hybrid maize breeding at the University of Hohenheim. Plant Breed 127:446–451CrossRefGoogle Scholar
  19. Frascaroli E, Canè MA, Pè ME, Pea G, Morgante M, Landi P (2009) QTL detection in maize testcross progenies as affected by related and unrelated testers. Theor Appl Genet 118:993–1004CrossRefPubMedGoogle Scholar
  20. Gallais A (1990) Théorie de la sélection en amélioration des plantes. Masson edn, ParisGoogle Scholar
  21. Gallais A (2009) Hétérosis et variétés hybrides en amélioration des plantes. Collection Synthèses. Editions Quae, VersaillesGoogle Scholar
  22. Godshalk E, Lee M, Lamkey K (1990) Relationship of restriction fragment length polymorphisms to single-cross hybrid performance of maize. Theor Appl Genet 80:273–280CrossRefPubMedGoogle Scholar
  23. Grieder C, Dhillon BS, Schipprack W, Melchinger AE (2012) Breeding maize as biogas substrate in Central Europe: I. Quantitative-genetic parameters for testcross performance. Theor Appl Genet 124:971–980CrossRefPubMedGoogle Scholar
  24. Jenkins MT, Brunson AM (1932) Methods of testing inbred lines of maize in crossbred combinations. J Am Soc Agron 24:523–530CrossRefGoogle Scholar
  25. Lee M, Godshalk E, Lamkey KR, Woodman W (1989) Association of restriction fragment length polymorphisms among maize inbreds with agronomic performance of their crosses. Crop Sci 29:1067–1071CrossRefGoogle Scholar
  26. Lee M, Sharopova N, Beavis WD, Grant D, Katt M, Blair D, Hallauer A (2002) Expanding the genetic map of maize with the intermated B73 by Mo17 (IBM) population. Plant Mol Biol 48:453–461CrossRefPubMedGoogle Scholar
  27. Livini C, Ajmone-Marsan P, Melchinger A, Messmer M, Motto M (1992) Genetic diversity of maize inbred lines within and among heterotic groups revealed by RFLPs. Theor Appl Genet 84:17–25CrossRefPubMedGoogle Scholar
  28. Manicacci D, Camus-Kulandaivelu L, Fourmann M, Arar C, Barrault S, Rousselet A, Feminias N, Consoli L, Francès L, Méchin V (2009) Epistatic interactions between Opaque2 transcriptional activator and its target gene CyPPDK1 control kernel trait variation in maize. Plant Physiol 150:506–520CrossRefPubMedPubMedCentralGoogle Scholar
  29. Melchinger AE (1999) Genetic diversity and heterosis. In: Coors JG, Pandey S (eds) The genetics and exploitation of heterosis in crops. American Society of Agronomy, Crop Science Society of America and Soil Science Society of America, Madison, pp 99–118Google Scholar
  30. Melchinger AE, Lee M, Lamkey KR, Hallauer AR, Woodman WL (1990) Genetic diversity for restriction fragment length polymorphisms and heterosis for two diallel sets of maize inbreds. Theor Appl Genet 80:488–496CrossRefPubMedGoogle Scholar
  31. Melchinger A, Messmer M, Lee M, Woodman W, Lamkey K (1991) Diversity and relationships among US maize inbreds revealed by restriction fragment length polymorphisms. Crop Sci 31:669–678CrossRefGoogle Scholar
  32. Messmer M, Melchinger A, Lee M, Woodman W, Lee E, Lamkey K (1991) Genetic diversity among progenitors and elite lines from the Iowa Stiff Stalk Synthetic (BSSS) maize population: comparison of allozyme and RFLP data. Theor Appl Genet 83:97–107CrossRefPubMedGoogle Scholar
  33. Mezmouk S, Dubreuil P, Bosio M, Décousset L, Charcosset A, Praud S, Mangin B (2011) Effect of population structure corrections on the results of association mapping tests in complex maize diversity panels. Theor Appl Genet 122:1149–1160CrossRefPubMedPubMedCentralGoogle Scholar
  34. Moll R, Salhuana W, Robinson H (1962) Heterosis and genetic diversity in varieties of maize. Crop Sci 2:197–198CrossRefGoogle Scholar
  35. Moll R, Lonnquist J, Fortuno JV, Johnson E (1965) The relationship of heterosis and genetic divergence in maize. Genetics 52:139–144PubMedPubMedCentralGoogle Scholar
  36. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  37. Reif JC, Gumpert F-M, Fischer S, Melchinger AE (2007) Impact of interpopulation divergence on additive and dominance variance in hybrid populations. Genetics 176:1931–1934CrossRefPubMedPubMedCentralGoogle Scholar
  38. Rogers JS (1972) Measures of genetic similarity and genetic distance. Studies in genetics VII. The University of Texas publications, Austin, pp 145–153Google Scholar
  39. Schrag TA, Melchinger AE, Sørensen AP, Frisch M (2006) Prediction of single-cross hybrid performance for grain yield and grain dry matter content in maize using AFLP markers associated with QTL. Theor Appl Genet 113:1037–1047CrossRefPubMedGoogle Scholar
  40. Schrag TA, Möhring J, Maurer HP, Dhillon BS, Melchinger AE, Piepho HP, Sørensen AP, Frisch M (2009) Molecular marker-based prediction of hybrid performance in maize using unbalanced data from multiple experiments with factorial crosses. Theor Appl Genet 118:741–751CrossRefPubMedGoogle Scholar
  41. Schrag TA, Möhring J, Melchinger AE, Kusterer B, Dhillon BS et al (2010) Prediction of hybrid performance in maize using molecular markers and joint analyses of hybrids and parental inbreds. Theor Appl Genet 120:451–461CrossRefPubMedGoogle Scholar
  42. Shull GH (1908) The composition of a field of maize. Am Breeders Assoc Rep 4:296–301Google Scholar
  43. Shull GH (1914) Duplicate genes for capsule-form in Bursa pastoris. Zeitschrift ind Abst u Verebsgl 12:97–149Google Scholar
  44. Smith OS (1986) Covariance between line per se and testcross performance. Crop Sci 26:540–543CrossRefGoogle Scholar
  45. Smith OS, Smith JSC, Bowen SL, Tenborg RA, Wall SJ (1990) Similarities among a group of elite maize inbreds as measured by pedigree, F1 grain yield, grain yield, heterosis, and RFLPs. Theor Appl Genet 80:833–840CrossRefPubMedGoogle Scholar
  46. Smith J, Duvick D, Smith O, Grunst A, Wall S (1999) Effect of hybrid breeding on genetic diversity in maize. In: Coors JG, Pandey S (eds) Genetics and exploitation of heterosis in crops. American Society of Agronomy, Crop Science Society of America and Soil Science Society of America, Madison, pp 119–126Google Scholar
  47. Sprague GF, Tatum LA (1942) General vs. specific combining ability in single crosses of corn. J Am Soc Agron 34:923–932CrossRefGoogle Scholar
  48. Technow F, Riedelsheimer C, Schrag TA, Melchinger AE (2012) Genomic prediction of hybrid performance in maize with models incorporating dominance and population specific marker effects. Theor Appl Genet 125:1181–1194CrossRefPubMedGoogle Scholar
  49. Technow F, Schrag TA, Schipprack W, Bauer E, Simianer H et al (2014) Genome properties and prospects of genomic prediction of hybrid performance in a breeding program of maize. Genetics 197:1343–1355CrossRefPubMedPubMedCentralGoogle Scholar
  50. Tenaillon MI, Charcosset A (2011) A European perspective on maize history. Comptes Rendus Biologies 334(3):221–228CrossRefPubMedGoogle Scholar
  51. Van Inghelandt D, Reif JC, Dhillon BS, Flament P, Melchinger AE (2011) Extent and genome-wide distribution of linkage disequilibrium in commercial maize germplasm. Theor Appl Genet 123:1–10CrossRefGoogle Scholar
  52. Vitezica ZG, Varona L, Elsen JM, Misztal I, Herring W, Legarra A (2016) Genomic BLUP including additive and dominant variation in purebreds and F1 crossbreds, with an application in pigs. Genet Sel Evol 48(1):1CrossRefGoogle Scholar
  53. Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38(2):203–208CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • A. Larièpe
    • 1
    • 3
  • L. Moreau
    • 1
  • J. Laborde
    • 2
  • C. Bauland
    • 1
  • S. Mezmouk
    • 3
  • L. Décousset
    • 3
  • T. Mary-Huard
    • 1
  • J. B. Fiévet
    • 1
  • A. Gallais
    • 1
  • P. Dubreuil
    • 3
  • A. Charcosset
    • 1
  1. 1.UMR de Génétique VégétaleINRA-Univ-Paris-Sud–CNRS–AgroParisTechGif-Sur-YvetteFrance
  2. 2.INRASt Martin De HinxFrance
  3. 3.BIOGEMMA, Genetics and Genomics in CerealsChappesFrance

Personalised recommendations