Insectes Sociaux

, Volume 59, Issue 1, pp 109–117 | Cite as

Colony genetic structure in the Australian jumper ant Myrmecia pilosula

  • Z.-Q. QianEmail author
  • B. C. Schlick-Steiner
  • F. M. Steiner
  • S. K. A. Robson
  • H. Schlüns
  • E. A. Schlüns
  • R. H. Crozier
Research Article


Eusocial insects vary significantly in colony queen number and mating frequency, resulting in a wide range of social structures. Detailed studies of colony genetic structure are essential to elucidate how various factors affect the relatedness and the sociogenetic organization of colonies. In this study, we investigated the colony structure of the Australian jumper ant Myrmecia pilosula using polymorphic microsatellite markers. Nestmate queens within polygynous colonies, and queens and their mates, were generally unrelated. The number of queens per colony ranged from 1 to 4. Queens were estimated to mate with 1–9 inferred and 1.0–11.4 effective mates. This is the first time that the rare co-occurrence of polygyny and high polyandry has been found in the M. pilosula species group. Significant maternity and paternity skews were detected at the population level. We also found an isolation-by-distance pattern, and together with the occurrence of polygynous polydomy, this suggests the occurrence of dependent colony foundation in M. pilosula; however, independent colony foundation may co-occur since queens of this species have fully developed wings and can fly. There is no support for the predicted negative association between polygyny and polyandry in ants.


Genetic relatedness Hymenoptera Microsatellites Myrmecia pilosula Polyandry Polygyny 



This study was supported by grants to RHC from the Australian Research Council (DP0665890, DP0450569) and by the Endeavour Postgraduate Award to Z-QQ from the Department of Education, Employment and Workplace Relations, Australia. EAS received scholarships from James Cook University and the Taxonomy Research and Information Network (TRIN), Australia. The authors thank Hai-Feng Zheng for map drawing, Ching Crozier for her assistance in the field survey and lab work, Robert W. Taylor for sample collection and identification, and two anonymous reviewers for their critical comments on an earlier version of the manuscript. Genotyping was performed by the Genetic Analysis Facility at James Cook University.


  1. Abbot P., Abe J., Alcock J. et al. 2011. Inclusive fitness theory and eusociality. Nature 471: E1-E4Google Scholar
  2. Bekkevold D., Frydenberg J. and Boomsma J.J. 1999. Multiple mating and facultative polygyny in the Panamanian leafcutter ant Acromyrmex echinatior. Behav. Ecol. Sociobiol. 46: 103-109Google Scholar
  3. Bolton B., Alpert G., Ward P.S. and Naskrecki P. 2007. Bolton’s Catalogue of Ants of the World 1758-2005. Harvard University Press, Cambridge (MA, USA)Google Scholar
  4. Boomsma J.J. and Ratnieks F.L.W. 1996. Paternity in eusocial Hymenoptera. Phil. Trans. R. Soc. Lond. B 351: 947-975Google Scholar
  5. Brady S.G., Schultz T.R., Fisher B.L. and Ward P.S. 2006. Evaluating alternative hypotheses for the early evolution and diversification of ants. Proc. Natl. Acad. Sci. USA 103: 18172-18177Google Scholar
  6. Chapuisat M. 1998. Mating frequency of ant queens with alternative dispersal strategies, as revealed by microsatellite analysis of sperm. Mol. Ecol. 7: 1097-1105Google Scholar
  7. Craig R. and Crozier R.H. 1979. Relatedness in the polygynous ant Myrmecia pilosula. Evolution 33: 335-341Google Scholar
  8. Crosland M.W.J., Crozier R.H. and Imai H.T. 1988. Evidence for several sibling biological species centred on Myrmecia pilosula (F. Smith) (Hymenoptera: Formicidae). J. Aust. Entomol. Soc. 27: 13-14Google Scholar
  9. Crozier R.H., Dobric N., Imai H.T., Graur D., Cornuet J.M. and Taylor R.W. 1995. Mitochondrial-DNA sequence evidence on the phylogeny of Australian jack-jumper ants of the Myrmecia pilosula complex. Mol. Phylogenet. Evol. 4: 20-30Google Scholar
  10. Crozier R.H. and Fjerdingstad E.J. 2001. Polyandry in social Hymenoptera - disunity in diversity? Ann. Zool. Fenn. 38: 267-285Google Scholar
  11. Dietemann V., Peeters C. and Hölldobler B. 2004. Gamergates in the Australian ant subfamily Myrmeciinae. Naturwissenschaften 91: 432-435Google Scholar
  12. Dumpert K. 1981. The Social Biology of Ants. Pitman Publishing Limited, Bath (UK)Google Scholar
  13. Fernández-Escudero I., Seppä P. and Pamilo P. 2001. Dependent colony founding in the ant Proformica longiseta. Insect. Soc. 48: 80-82Google Scholar
  14. Foitzik S. and Heinze J. 1998. Nest site limitation and colony takeover in the ant Leptothorax nylanderi. Behav. Ecol. 9: 367-375Google Scholar
  15. Foitzik S., Strätz M. and Heinze J. 2003. Ecology, life history and resource allocation in the ant, Leptothorax nylanderi. J. Evol. Biol. 16: 670-680Google Scholar
  16. Fournier D., Aron S. and Milinkovitch M.C. 2002. Investigation of the population genetic structure and mating system in the ant Pheidole pallidula. Mol. Ecol. 11: 1805-1814Google Scholar
  17. Giraud T., Blatrix R., Poteaux C., Solignac M. and Jaisson P. 2000. Population structure and mating biology of the polygynous ponerine ant Gnamptogenys striatula in Brazil. Mol. Ecol. 9: 1835-1841Google Scholar
  18. Goudet J. 1995. FSTAT (Version 1.2): a computer program to calculate F-statistics. J. Hered. 86: 485-486Google Scholar
  19. Hölldobler B. and Wilson E.O. 1990. The Ants. Harvard University Press, Cambridge (MA, USA)Google Scholar
  20. Hamilton W.D. 1964. The genetical evolution of social behaviour. J. Theor. Biol. 7: 1-52Google Scholar
  21. Hammond R.L., Bourke A.F.G. and Bruford M.W. 2001. Mating frequency and mating system of the polygynous ant, Leptothorax acervorum. Mol. Ecol. 10: 2719-2728Google Scholar
  22. Hasegawa E. and Crozier R.H. 2006. Phylogenetic relationships among species groups of the ant genus Myrmecia. Mol. Phylogenet. Evol. 38: 575-582Google Scholar
  23. Haskins C.P. and Haskins E.F. 1955. The pattern of colony foundation in the archaic ant Myrmecia regularis. Insect. Soc. 2: 115-126Google Scholar
  24. Haskins C.P. 1970. Researches in the biology and social behavior of primitive ants. In: Development and Evolution of Behavior (Aronson L.R., Tobach E., Lehrman D.S. and Rosenblatt J.S., Eds), W. H. Freeman and Company, San Francisco (CA, USA). pp 355-388Google Scholar
  25. Heinze J. 2008. The demise of the standard ant (Hymenoptera: Formicidae). Myrmecol. News 11: 9-20Google Scholar
  26. Herbers J.M. 1986. Nest site limitation and facultative polygyny in the ant Leptothorax longispinosus. Behav. Ecol. Sociobiol. 19: 115-122Google Scholar
  27. Holm S. 1979. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6: 65-70Google Scholar
  28. Hughes W.O.H., Oldroyd B.P., Beekman M. and Ratnieks F.L.W. 2008a. Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320: 1213-1216Google Scholar
  29. Hughes W.O.H., Ratnieks F.L.W. and Oldroyd B.P. 2008b. Multiple paternity or multiple queens: two routes to greater intracolonial genetic diversity in the eusocial Hymenoptera. J. Evol. Biol. 21: 1090-1095Google Scholar
  30. Imai H.T., Taylor R.W. and Crozier R.H. 1994. Experimental bases for the minimum interaction theory. 1. Chromosome evolution in ants of the Myrmecia pilosula species complex (Hymenoptera, Formicidae, Myrmeciinae). Jpn. J. Genet. 69: 137-182Google Scholar
  31. Johnson R. 2010. Independent colony founding by ergatoid queens in the ant genus Pogonomyrmex: queen foraging provides an alternative to dependent colony founding. Insect. Soc. 57: 169-176Google Scholar
  32. Jones O.R. and Wang J. 2010. COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol. Ecol. Resour. 10: 551-555Google Scholar
  33. Keller L. 1991. Queen number, mode of colony founding, and queen reproductive success in ants (Hymenoptera Formicidae). Ethol. Ecol. Evol. 3: 307 – 316Google Scholar
  34. Keller L. and Reeve H.K. 1994. Genetic variability, queen number, and polyandry in social Hymenoptera. Evolution 48: 694-704Google Scholar
  35. Kellner K., Trindl A., Heinze J. and D’ettorre P. 2007. Polygyny and polyandry in small ant societies. Mol. Ecol. 16: 2363-2369Google Scholar
  36. Kronauer D.J.C., Schöning C., Pedersen J.S., Boomsma J.J. and Gadau J. 2004. Extreme queen-mating frequency and colony fission in African army ants. Mol. Ecol. 13: 2381-2388Google Scholar
  37. Kronauer D.J.C. and Boomsma J.J. 2007. Multiple queens means fewer mates. Curr. Biol. 17: R753-R755Google Scholar
  38. Kronauer D.J.C., Johnson R.A., Boomsma J.J. and Mueller U. 2007. The evolution of multiple mating in army ants. Evolution 61: 413-422Google Scholar
  39. Liautard C. and Keller L. 2001. Restricted effective queen dispersal at a microgeographic scale in polygynous populations of the ant Formica exsecta. Evolution 55: 2484-2492Google Scholar
  40. Liu K. and Muse S.V. 2005. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21: 2128-2129Google Scholar
  41. Lorite P. and Palomeque T. 2010. Karyotype evolution in ants (Hymenoptera: Formicidae), with a review of the known ant chromosome numbers. Myrmecol. News 13: 89-102Google Scholar
  42. Moreau C.S., Bell C.D., Vila R., Archibald S.B. and Pierce N.E. 2006. Phylogeny of the ants: diversification in the age of angiosperms. Science 312: 101-104Google Scholar
  43. Moreau C.S. 2009. Inferring ant evolution in the age of molecular data (Hymenoptera: Formicidae). Myrmecol. News 12: 201-210Google Scholar
  44. Nielsen R., Tarpy D.R. and Reeve H.K. 2003. Estimating effective paternity number in social insects and the effective number of alleles in a population. Mol. Ecol. 12: 3157-3164Google Scholar
  45. Nonacs P. 2000. Measuring and using skew in the study of social behavior and evolution. Am. Nat. 156: 577-589Google Scholar
  46. Ogata K. and Taylor R.W. 1991. Ants of the genus Myrmecia Fabricius: a preliminary review and key to the named species (Hymenoptera: Formicidae: Myrmeciinae). J. Nat. Hist. 25: 1623-1673Google Scholar
  47. Peakall R. and Smouse P.E. 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6: 288-295Google Scholar
  48. Pearcy M., Hardy O. and Aron S. 2006. Thelytokous parthenogenesis and its consequences on inbreeding in an ant. Heredity 96: 377-382Google Scholar
  49. Pedersen J.S. and Boomsma J.J. 1999a. Positive association of queen number and queen-mating frequency in Myrmica ants: a challenge to the genetic-variability hypotheses. Behav. Ecol. Sociobiol. 45: 185-193Google Scholar
  50. Pedersen J.S. and Boomsma J.J. 1999b. Genetic analysis of colony structure in polydomous and polygynous ant populations. Biol. J. Linn. Soc. 66: 115-144Google Scholar
  51. Peeters C. and Ito F. 2001. Colony dispersal and the evolution of queen morphology in social Hymenoptera. Annu. Rev. Entomol. 46: 601-630Google Scholar
  52. Peeters C. and Molet M. 2009. Colonial reproduction and life histories. In: Ant Ecology (Lach L., Parr C.L. and Abbott K.L., Eds), Oxford University Press, New York (NY, USA). pp 159-176Google Scholar
  53. Pol R.G., de Casenave J.L., Feldhaar H., Milesi F.A. and Gadau J. 2008. Polyandry in two South American harvester ants. Insect. Soc. 55: 91-97Google Scholar
  54. Qian Z.-Q., Ceccarelli F.S., Carew M.E., Schlüns H., Schlick-Steiner B.C. and Steiner F.M. 2011a. Characterization of polymorphic microsatellites in the giant bulldog ant, Myrmecia brevinoda and the jumper ant, M. pilosula. J. Insect Sci. 11: 71Google Scholar
  55. Qian Z.-Q., Schlüns H., Schlick-Steiner B.C., Steiner F.M., Robson S.K.A., Schlüns E.A. and Crozier R.H. 2011b. Intraspecific support for the polygyny-vs.-polyandry hypothesis in the bulldog ant Myrmecia brevinoda. Mol. Ecol. 20: 3681-3691Google Scholar
  56. Queller D.C. and Goodnight K.F. 1989. Estimating relatedness using genetic markers. Evolution 43: 258-275Google Scholar
  57. Rheindt F.E., Gadau J., Strehl C.-P. and Hölldobler B. 2004. Extremely high mating frequency in the Florida harvester ant (Pogonomyrmex badius). Behav. Ecol. Sociobiol. 56: 472-481Google Scholar
  58. Sanetra M. and Crozier R.H. 2001. Polyandry and colony genetic structure in the primitive ant Nothomyrmecia macrops. J. Evol. Biol. 14: 368-378Google Scholar
  59. Sanetra M. 2011. Nestmate relatedness in the Australian ant Myrmecia pyriformis SMITH, 1858 (Hymenoptera: Formicidae). Myrmecol. News 15: 77-84Google Scholar
  60. Schlüns E.A., Wegener B., Schlüns H., Azuma N., Robson S.K.A. and Crozier R.H. 2009. Breeding system, colony and population structure in the weaver ant Oecophylla smaragdina. Mol. Ecol. 18: 156-167Google Scholar
  61. Schlüns H. and Crozier R.H. 2009. Molecular and chemical immune defenses in ants (Hymenoptera: Formicidae). Myrmecol. News 12: 237-249Google Scholar
  62. Seifert B. 2009. Cryptic species in ants (Hymenoptera: Formicidae) revisited: we need a change in the alpha-taxonomic approach. Myrmecol. News 12: 149-166Google Scholar
  63. Seppä P. and Walin L. 1996. Sociogenetic organization of the red ant Myrmica rubra. Behav. Ecol. Sociobiol. 38: 207-217Google Scholar
  64. Shimizu M., Kosaka N., Shimada T., Nagahata T., Iwasaki H., Nagai H., Shiba T. and Emi M. 2002. Universal fluorescent labeling (UFL) method for automated microsatellite analysis. DNA Res. 9: 173-178Google Scholar
  65. Smith F. 1858. Catalogue of Hymenopterous Insects in the Collection of the British Museum. Part VI. Formicidae. Taylor and Francis, London (UK)Google Scholar
  66. Steiner F.M., Crozier R.H. and Schlick-Steiner B.C. 2009. Colony structure. In: Ant Ecology (Lach L., Parr C.L. and Abbott K.L., Eds), Oxford University Press, New York (NY, USA). pp 177-193Google Scholar
  67. Sumner S., Hughes W.O.H., Pedersen J.S. and Boomsma J.J. 2004. Ant parasite queens revert to mating singly. Nature 428: 35-36Google Scholar
  68. Taylor R.W. 1978. Nothomyrmecia macrops: A living-fossil ant rediscovered. Science 201: 979-985Google Scholar
  69. Trontti K., Aron S. and Sundström L. 2005. Inbreeding and kinship in the ant Plagiolepis pygmaea. Mol. Ecol. 14: 2007-2015Google Scholar
  70. Trontti K., Thurin N., Sundström L. and Aron S. 2007. Mating for convenience or genetic diversity? Mating patterns in the polygynous ant Plagiolepis pygmaea. Behav. Ecol. 18: 298-303Google Scholar
  71. Villet M.H. 1991. Colony foundation in Plectroctena mandibularis F. Smith, and the evolution of ergatoid queens in Plectroctena (Hymenoptera: Formicidae). J. Nat. Hist. 25: 979 - 983Google Scholar
  72. Villet M.H. 1999. Reproductive behaviour of Plectroctena mandibularis F. Smith (Hymenoptera: Formicidae), a ponerine ant with ergatoid queens. Afr. Entomol. 7: 289-291Google Scholar
  73. Ward P.S. and Brady S.G. 2003. Phylogeny and biogeography of the ant subfamily Myrmeciinae (Hymenoptera: Formicidae). Invertebr. Syst. 17: 361-386Google Scholar
  74. Weir B.S. and Cockerham C.C. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358-1370.Google Scholar
  75. Wright S. 1943. Isolation by distance. Genetics 28: 114-138Google Scholar
  76. Zinck L., Jaisson P., Hora R.R., Denis D., Poteaux C. and Doums C. 2007. The role of breeding system on ant ecological dominance: genetic analysis of Ectatomma tuberculatum. Behav. Ecol. 18: 701-708Google Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2011

Authors and Affiliations

  • Z.-Q. Qian
    • 1
    Email author
  • B. C. Schlick-Steiner
    • 2
  • F. M. Steiner
    • 2
  • S. K. A. Robson
    • 1
  • H. Schlüns
    • 1
    • 3
  • E. A. Schlüns
    • 1
    • 3
  • R. H. Crozier
    • 1
  1. 1.School of Marine and Tropical BiologyJames Cook UniversityTownsvilleAustralia
  2. 2.Molecular Ecology Group, Institute of EcologyUniversity of InnsbruckInnsbruckAustria
  3. 3.Department of ApicultureUniversity of Agricultural Sciences and Veterinary MedicineCluj-NapocaRomania

Personalised recommendations