Skip to main content
Log in

Dynamics of a Tracer Particle Interacting with Excitations of a Bose–Einstein Condensate

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We consider the quantum dynamics of a large number N of interacting bosons coupled a tracer particle, i.e. a particle of another kind, on a torus. We assume that in the initial state the bosons essentially form a homogeneous Bose–Einstein condensate, with some excitations. With an appropriate mean-field scaling of the interactions, we prove that the effective dynamics for \(N\rightarrow \infty \) is generated by the Bogoliubov–Fröhlich Hamiltonian, which couples the tracer particle linearly to the excitation field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benedikter, N., Porta, M., Schlein, B.: Effective Evolution Equations from Quantum Dynamics. Springer Briefs in Mathematical Physics. Springer, Berlin (2016)

    Book  Google Scholar 

  2. Boccato, C., Brennecke, C., Cenatiempo, S., Schlein, B.: Complete Bose-Einstein condensation in the Gross-Pitaevskii regime. Commun. Math. Phys. 359(3), 975–1026 (2018)

    Article  MathSciNet  Google Scholar 

  3. Boccato, C., Brennecke, C., Cenatiempo, S., Schlein, B.: Bogoliubov theory in the Gross-Pitaevskii limit. Acta Math. 222(2), 219–335 (2019)

    Article  MathSciNet  Google Scholar 

  4. Bogoliubov, N.: On the theory of superfluidity. J. Phys. 11(1), 23 (1947)

    MathSciNet  Google Scholar 

  5. Boßmann, L., Pavlović, N., Pickl, P., Soffer, A.: Higher order corrections to the mean-field description of the dynamics of interacting bosons. J. Stat. Phys. 178(6), 1362–1396 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  6. Boßmann, L., Petrat, P., Pickl, P., Soffer, A.: Beyond Bogoliubov dynamics (2019). arXiv:1912.11004

  7. Boßmann, L., Petrat, P., Seiringer, R.: Asymptotic expansion of the low-energy excitation spectrum for weakly interacting bosons (2020). arXiv:2020.09825

  8. Brennecke, C., Nam, P.T., Napiórkowski, M., Schlein, B.: Fluctuations of N-particle quantum dynamics around the nonlinear Schrödinger equation. Ann. Inst. H. Poincaré C Anal. Non Linéaire 36(5), 1201–1235 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  9. Chen, T., Soffer, A.: Mean field dynamics of a quantum tracer particle interacting with a boson gas. J. Funct. Anal. 276(3), 971–1006 (2019)

    Article  MathSciNet  Google Scholar 

  10. Deckert, D.-A., Fröhlich, J., Pickl, P., Pizzo, A.: Dynamics of sound waves in an interacting Bose gas. Adv. Math. 293, 275–323 (2016)

    Article  MathSciNet  Google Scholar 

  11. Dereziński, J., Napiórkowski, M.: Excitation spectrum of interacting bosons in the mean-field infinite-volume limit. Ann. Henri Poincaré 15(12), 2409–2439 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  12. Fröhlich, H.: Theory of electrical breakdown in ionic crystals. Proc. R. Soc. Lond. A 160(901), 230–241 (1937)

    Article  ADS  Google Scholar 

  13. Fröhlich, J., Gang, Z., Soffer, A.: Some Hamiltonian models of friction. J. Math. Phys. 52, 083508 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  14. Ginibre, J., Velo, G.: The classical field limit of scattering theory for non-relativistic many-boson systems I. Commun. Math. Phys. 66(1), 37–76 (1979)

    Article  ADS  Google Scholar 

  15. Ginibre, J., Velo, G.: The classical field limit of scattering theory for non-relativistic many-boson systems II. Commun. Math. Phys. 68(1), 45–68 (1979)

    Article  ADS  Google Scholar 

  16. Golse, F.: On the dynamics of large particle systems in the mean field limit. In: Muntean, A., Rademacher, J., Zagaris, A. (eds.) Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity, pp. 1–144. Springer, Berlin (2016)

    Google Scholar 

  17. Grech, P., Seiringer, R.: The excitation spectrum for weakly interacting bosons in a trap. Commun. Math. Phys. 322(2), 559–591 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  18. Grillakis, M., Machedon, M.: Pair excitations and the mean field approximation of interacting bosons I. Commun. Math. Phys. 324(2), 601–636 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  19. Grillakis, M., Machedon, M.: Pair excitations and the mean field approximation of interacting bosons II. Commun. PDE 42(1), 24–67 (2017)

    Article  MathSciNet  Google Scholar 

  20. Grillakis, M., Machedon, M., Margetis, D.: Second-order corrections to mean field evolution of weakly interacting bosons I. Commun. Math. Phys. 294(1), 273 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  21. Grillakis, M., Machedon, M., Margetis, D.: Second-order corrections to mean field evolution of weakly interacting bosons II. Adv. Math. 228(3), 1788–1815 (2011)

    Article  MathSciNet  Google Scholar 

  22. Grusdt, F., Demler, E.: New theoretical approaches to Bose polarons. In: Inguscio, M., Ketterle, W., Stringari, S., Roati, G. (eds.) Proceedings of the International School of Physics “Enrico Fermi”, pp. 325–411. Società Italiana di Fisica (2016)

  23. Gustafson, S.J., Sigal, I.M.: Mathematical Concepts of Quantum Mechanics, 3rd edn. Universitext, Springer (2020)

    Book  Google Scholar 

  24. Hepp, K.: The classical limit for quantum mechanical correlation functions. Commun. Math. Phys. 35(4), 265–277 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  25. Kuz, E.: Exact evolution versus mean field with second-order correction for bosons interacting via short-range two-body potential. Differ. Integral Equ. 30(7/8), 587–630 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Lampart, J.: The renormalised Bogoliubov-Fröhlich Hamiltonian. J. Math. Phys. 61(10), 101902 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  27. Lewin, M.: Mean-field limit of Bose systems: rigorous results (2015). arXiv:1510.04407

  28. Lewin, M., Nam, P.T., Schlein, B.: Fluctuations around Hartree states in the mean field regime. Am. J. Math. 137(6), 1613–1650 (2015)

    Article  MathSciNet  Google Scholar 

  29. Lewin, M., Nam, P.T., Serfaty, S., Solovej, J.P.: Bogoliubov spectrum of interacting Bose gases. Commun. Pure Appl. Math. 68(3), 413–471 (2015)

    Article  MathSciNet  Google Scholar 

  30. Lieb, E.H., Seiringer, R., Solovey, J.P., Yngvason, J.: The Mathematics of the Bose Gas and Its Condensation. Oberwolfach Seminars, Birkhäuser (2005)

    MATH  Google Scholar 

  31. Mitrouskas, D., Petrat, S., Pickl, P.: Bogoliubov corrections and trace norm convergence for the Hartree dynamics. Rev. Math. Phys. 31(8), 1950024 (2019)

    Article  MathSciNet  Google Scholar 

  32. Møller, J.S.: The translation invariant massive Nelson model: I. The bottom of the spectrum. Ann. H. Poincaré 6(6), 1091–1135 (2005)

    Article  MathSciNet  Google Scholar 

  33. Mysliwy, K., Seiringer, R.: Microscopic derivation of the Fröhlich Hamiltonian for the Bose polaron in the mean-field limit (2020). arXiv preprint arXiv:2003.12371

  34. Nam, P.T.: Bogoliubov theory and bosonic atoms (2011). arXiv:1109.2875

  35. Nam, P.T., Napiórkowski, M.: Bogoliubov correction to the mean-field dynamics of interacting bosons. Adv. Theor. Math. Phys. 21(3), 683–738 (2017)

    Article  MathSciNet  Google Scholar 

  36. Nam, P.T., Napiórkowski, M.: A note on the validity of Bogoliubov correction to mean-field dynamics. J. Math. Pures Appl. 108(5), 662–688 (2017)

    Article  MathSciNet  Google Scholar 

  37. Nam, P.T., Napiórkowski, M.: Norm approximation for many-body quantum dynamics: focusing case in low dimensions. Adv. Math. 350, 547–587 (2019)

    Article  MathSciNet  Google Scholar 

  38. Nam, P.T., Triay, A.: Bogoliubov excitation spectrum of trapped Bose gases in the Gross-Pitaevskii regime (2021). arXiv:2106.11949

  39. Nelson, E.: Interaction of nonrelativistic particles with a quantized scalar field. J. Math. Phys. 5(9), 1190–1197 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  40. Paul, T., Pulvirenti, M.: Asymptotic expansion of the mean-field approximation. Discrete Contin. Dyn. Syst. A 39(4), 1891–1921 (2019)

    Article  MathSciNet  Google Scholar 

  41. Petrat, S., Pickl, P., Soffer, A.: Derivation of the Bogoliubov time evolution for a large volume mean-field limit. Ann. Henri Poincaré 21(2), 461–498 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  42. Pizzo, A.: Bose particles in a box I. A convergent expansion of the ground state of a three-modes Bogoliubov Hamiltonian (2015). arXiv:1511.07022

  43. Pizzo, A.: Bose particles in a box II. A convergent expansion of the ground state of the Bogoliubov Hamiltonian in the mean field limiting regime (2015). arXiv:1511.07025

  44. Pizzo, A.: Bose particles in a box III. A convergent expansion of the ground state of the Hamiltonian in the mean field limiting regime (2015). arXiv:1511.07026

  45. Reed, M., Simon, B.: Methods of Modern Mathematical Physics: II. Fourier Analysis, Self-Adjointness. Academic Press, London (1975)

    MATH  Google Scholar 

  46. Rougerie, N.: Scaling limits of bosonic ground states, from many-body to non-linear Schrödinger. EMS Surv. Math. Sci. 7(2), 253–408 (2021)

    Article  MathSciNet  Google Scholar 

  47. Seiringer, R.: The excitation spectrum for weakly interacting bosons. Commun. Math. Phys. 306(2), 565–578 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  48. Seiringer, R.: Bose gases, Bose-Einstein condensation, and the Bogoliubov approximation. J. Math. Phys. 55(7), 075209 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  49. Spohn, H.: Kinetic equations from Hamiltonian dynamics: Markovian limits. Rev. Mod. Phys. 52(3), 569–615 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  50. Zipkes, C., Palzer, S., Sias, C., Köhl, M.: A trapped single ion inside a Bose-Einstein condensate. Nature 464(7287), 388–391 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Lampart.

Additional information

Communicated by Alain Joye.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Self-Adjointness of the Hamiltonians

Self-Adjointness of the Hamiltonians

Here, we prove the relevant self-adjointness and domain properties of \(H^\mathrm {aux}\) and \(H^\mathrm {BF}\), as well as a useful general lemma.

Lemma A.1

Let \((M_{jk})_{j,k\in \mathbb {N}}\in \ell ^2(\mathbb {N}\times \mathbb {N})\). Then, for any \(\Phi \in D(\mathcal {N}_+)\)

$$\begin{aligned} \Big \Vert \sum _{j,k\in \mathbb {N}} M_{j,k} a_j a_k \Phi \Big \Vert _{\mathcal {F}_+}&\le \Vert M\Vert _{\ell ^2} \Vert \mathcal {N}_+ \Phi \Vert _{\mathcal {F}_+} \\ \Big \Vert \sum _{j,k\in \mathbb {N}} M_{j,k} a_j^* a_k^* \Phi \Big \Vert _{\mathcal {F}_+}&\le \Vert M\Vert _{\ell ^2} \Vert (\mathcal {N}_+ +2) \Phi \Vert _{\mathcal {F}_+}. \end{aligned}$$

Proof

We only prove the first inequality; the second can be proved in a similar way. We have for any \(\Psi \in \mathcal {F}_+\) by the Cauchy–Schwarz inequality

$$\begin{aligned} \Big |\left\langle \Psi , \sum _{j,k\in \mathbb {N}} M_{j,k} a_j a_k \Phi \right\rangle \Big | \le \Vert M\Vert _{\ell ^2} \left( \sum _{j,k\in \mathbb {N}} |\langle \Psi , a_j a_k \Phi \rangle |^2\right) ^{1/2}. \end{aligned}$$
(64)

With (43), we get the claim. \(\square \)

Lemma A.2

Let \(V, W\in L^2(T^d, \mathbb {R})\) satisfy Assumption 2.1. The operator \(H_N^\mathrm {aux}\) defined by the expression (27) is self-adjoint on \(U_N D(H_N)\) and essentially self-adjoint on \(D(H_0)\).

Proof

For the second claim, we prove that \(H_N^\mathrm {aux}\) is a perturbation of \(-\tfrac{1}{2m}\Delta _x + d\Gamma (-\Delta )^{\le N}\), the projection of \(H_0\) to \(\mathcal {H}_+^{\le N}\), by a bounded operator.

For the quadratic terms in (27), this follows from the fact that \(H_N^\mathrm {aux}\) acts non-trivially only on \(\mathcal {H}_+^{\le N}\) and Lemma A.1 together with Parseval’s identity, which yields

$$\begin{aligned} \Vert V_{jk00}\Vert _{\ell ^2(\mathbb {N}\times \mathbb {N})}^2&= \Vert V_{00jk}\Vert _{\ell ^2(\mathbb {N}\times \mathbb {N})}^2 \nonumber \\&\le \sum _{j,k\in \mathbb {N}_0} \Big | \int _{T^d } \int _{T^d } \bar{\varphi }_j(y) \bar{\varphi }_k(y') V(y-y') \mathrm{d}y \mathrm{d}y' \Big |^2 \nonumber \\&= \Vert V(y-y')\Vert _{L^2(T^d \times T^d)}^2 = \Vert V\Vert _{L^2(T^d) }^2, \nonumber \\ \Vert V_{j0k0}\Vert _{\ell ^2(\mathbb {N}\times \mathbb {N})}^2&\le \sum _{j,k\in \mathbb {N}_0} \big |\langle \varphi _j \otimes \varphi _0, V(y_1-y_2) \varphi _0 \otimes \varphi _k \rangle \big |^2 = \Vert V\Vert _{L^2(T^d) }^2.\nonumber \\ \end{aligned}$$
(65)

For the linear term in (27), this follows from the bound \(\Vert a(W_x)\Psi \Vert _{\mathcal {H}_+}\le \Vert W\Vert _{L^2} \Vert \sqrt{\mathcal {N}_+} \Psi \Vert _{\mathcal {H}_+}\) by the same reasoning. Hence, \(H^\mathrm {aux}_N\) is self-adjoint on the domain of \(-\tfrac{1}{2m}\Delta _x + d\Gamma (-\Delta )^{\le N}\) and essentially self-adjoint on \(D(H_0)\) by the Kato-Rellich theorem.

To obtain the first claim, it is now sufficient to prove that the difference of \(H_N^\mathrm {aux}\) and \(U_N H_N U_N^*\) is bounded relative to \(d\Gamma (-\Delta )^{\le N}\), with relative bound zero. This difference consists of cubic (49) and quartic (50) terms involving V, and a quadratic term (48) with W. The cubic terms are bounded by an argument analogous to (40). The relative bound for \(N^{-1/2}d\Gamma (QW_xQ)^{\le N}\) (i.e. (48)) is a consequence of the bound for \(\Psi \in D(d\Gamma (-\Delta ))\), \(\Phi \in \mathcal {H}_+^{\le N}\), and \(\lambda \ge 0\) (cf. [32, Eqs.2.9, 2.10])

$$\begin{aligned} |\langle \Phi , N^{-1/2} d\Gamma (QW_xQ)^{\le N} \Psi \rangle |&\le N^{-1/2}\Vert \mathcal {N}_+^{1/2} \Phi \Vert _{\mathcal {H}_+^{\le N}} \Vert d\Gamma ((QW_xQ)^2)^{1/2}\Psi \Vert _{\mathcal {H}_+^{\le N}} \nonumber \\&\le \varepsilon \Vert \Phi \Vert _{\mathcal {H}_+^{\le N}} \Vert d\Gamma ((\lambda -\Delta )^2)^{1/2}\Psi \Vert _{\mathcal {H}_+^{\le N}} \nonumber \\&\le \varepsilon \Vert \Phi \Vert _{\mathcal {H}_+^{\le N}}\Vert d\Gamma (\lambda -\Delta )\Psi \Vert _{\mathcal {H}_+^{\le N}}, \end{aligned}$$
(66)

with \(\varepsilon =\Vert (\lambda -\Delta )^{-1}W_x\Vert _{L^2 \rightarrow L^2}=\Vert W_x(\lambda -\Delta )^{-1}\Vert _{L^2 \rightarrow L^2}\). Since \(\varepsilon \) goes to zero as \(\lambda \rightarrow \infty \), because W is infinitesimally \(-\Delta \)-bounded, this gives an infinitesimal bound. The quartic term is \(d\Gamma (-\Delta )^{\le N}\)-bounded by the same reasoning and the estimates that give (55).

Proposition A.3

Let \(V, W\in L^2(T^d)\), then \(H^\mathrm {BF}-H_0\) is \(\mathcal {N}_+\)-bounded and \(H^\mathrm {BF}\) is essentially self-adjoint on \(D(H_0)\).

Proof

The first statement follows from Lemma A.1 as above. Consequently, there exists a constant c such that \(H^\mathrm {BF}+ c\mathcal {N}_+\) is self-adjoint and positive on \(D(H_0)=D(H_0+c\mathcal {N}_+)\) by the Kato–Rellich theorem, since \(H^\mathrm {BF}-H_0\) is \(H_0 + c\mathcal {N}_+\)-bounded with bound less than one.

Essential self-adjointness of \(H^\mathrm {BF}\) can now be obtained by applying the commutator theorem [45, Thm.X.36], with \(H^\mathrm {BF}+ c\mathcal {N}_+\) as a comparison operator. For this, it is sufficient to prove that

$$\begin{aligned} |\langle \Phi , [\mathcal {N}_+, H^\mathrm {BF}] \Phi \rangle | = |\langle \Phi , {[}\mathcal {N}_+, H^\mathrm {BF}-H_0 ] \Phi \rangle | \le C \langle \Phi , \mathcal {N}_+ \Phi \rangle , \end{aligned}$$

for some constant \(C>0\) and all \(\Phi \in D(H_0^{1/2})\). Since the commutator of \(\mathcal {N}_+\) with \(H^\mathrm {Bog}\) is again a quadratic operator, composed of the same terms up to signs, this follows from Lemma A.1 as above. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lampart, J., Pickl, P. Dynamics of a Tracer Particle Interacting with Excitations of a Bose–Einstein Condensate. Ann. Henri Poincaré 23, 2855–2876 (2022). https://doi.org/10.1007/s00023-022-01153-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-022-01153-5

Navigation