Skip to main content
Log in

Derivation of the Bogoliubov Time Evolution for a Large Volume Mean-Field Limit

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

The derivation of mean-field limits for quantum systems at zero temperature has attracted many researchers in the last decades. Recent developments are the consideration of pair correlations in the effective description, which lead to a much more precise description of both spectral properties and the dynamics of the Bose gas in the weak coupling limit. While mean-field results typically lead to convergence for the reduced density matrix only, one obtains norm convergence when considering the pair correlations proposed by Bogoliubov in his seminal 1947 paper. In this article, we consider an interacting Bose gas in the case where both the volume and the density of the gas tend to infinity simultaneously. We assume that the coupling constant is such that the self-interaction of the fluctuations is of leading order, which leads to a finite (nonzero) speed of sound in the gas. In our first main result, we show that the difference between the N-body and the Bogoliubov description is small in \(L^2\) as the density of the gas tends to infinity and the volume does not grow too fast. This describes the dynamics of delocalized excitations of the order of the volume. In our second main result, we consider an interacting Bose gas near the ground state with a macroscopic localized excitation of order of the density. We prove that the microscopic dynamics of the excitation coming from the N-body Schrödinger equation converges to an effective dynamics which is free evolution with the Bogoliubov dispersion relation. The main technical novelty are estimates for all moments of the number of particles outside the condensate for large volume, and in particular control of the tails of their distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anapolitanos, I., Hott, M.: A simple proof of convergence to the Hartree dynamics in Sobolev trace norms. J. Math. Phys. 57(12), 122108 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Bach, V., Breteaux, S., Chen, T., Fröhlich, J., Sigal, I.M.: The time dependent Hartree–Fock–Bogoliubov equations for Bosons. (Preprint) (2016). arXiv:1602.05171v2

  3. Benedikter, N., de Oliveira, G., Schlein, B.: Quantitative derivation of the Gross–Pitaevskii equation. Commun. Pure Appl. Math. 68(8), 1399–1482 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Benedikter, N., Porta, M., Schlein, B.: Effective Evolution Equations from Quantum Dynamics. Springer Briefs in Mathematical Physics, Cambridge (2016)

    MATH  Google Scholar 

  5. Boccato, C., Cenatiempo, S., Schlein, B.: Quantum many-body fluctuations around nonlinear Schrödinger dynamics. Ann. Henri Poincaré 18(1), 113–191 (2016)

    ADS  MATH  Google Scholar 

  6. Bogoliubov, N.N.: On the theory of superfluidity. J. Phys. (USSR) 11(1), 23–32 (1947)

    MathSciNet  Google Scholar 

  7. Brennecke, C., Nam, P.T., Napiórkowski, M., Schlein, B.: Fluctuations of N-particle quantum dynamics around the nonlinear Schrödinger equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 36(5), 1201–1235 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  8. Chen, L., Lee, J.O.: Rate of convergence in nonlinear Hartree dynamics with factorized initial data. J. Math. Phys. 52(5), 052108 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Chen, L., Lee, J.O., Schlein, B.: Rate of convergence towards Hartree dynamics. J. Stat. Phys. 144, 872–903 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Chen, T., Pavlović, N.: Derivation of the cubic NLS and Gross–Pitaevskii hierarchy from manybody dynamics in \(d = 3\) based on spacetime norms. Ann. Henri Poincaré 15(3), 543–588 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Chen, X., Holmer, J.: Correlation structures, many-body scattering processes and the derivation of the Gross–Pitaevskii hierarchy. Int. Math. Res. Not. 2016(10), 3051–3110 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Deckert, D.-A., Fröhlich, J., Pickl, P., Pizzo, A.: Dynamics of sound waves in an interacting Bose gas. Adv. Math. 293, 275–323 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Dereziński, J., Napiórkowski, M.: Excitation spectrum of interacting Bosons in the mean-field infinite-volume limit. Ann. Henri Poincaré 15(12), 2409–2439 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Erdős, L., Schlein, B., Yau, H.-T.: Derivation of the Gross–Pitaevskii hierarchy for the dynamics of Bose–Einstein condensate. Commun. Pure Appl. Math. 59(12), 1659–1741 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Erdős, L., Schlein, B., Yau, H.-T.: Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems. Invent. Math. 167(3), 515–614 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Erdős, L., Schlein, B., Yau, H.-T.: Rigorous derivation of the Gross–Pitaevskii equation. Phys. Rev. Lett. 98(4), 040404 (2007)

    ADS  Google Scholar 

  17. Erdős, L., Schlein, B., Yau, H.-T.: Rigorous derivation of the Gross–Pitaevskii equation with a large interaction potential. J. Am. Math. Soc. 22(4), 1099–1156 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Erdős, L., Schlein, B., Yau, H.-T.: Derivation of the Gross–Pitaevskii equation for the dynamics of Bose–Einstein condensate. Ann. Math. 172(1), 291–370 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Erdős, L., Yau, H.-T.: Derivation of the nonlinear Schrödinger equation from a many body Coulomb system. Adv. Theor. Math. Phys. 5(6), 1169–1205 (2001)

    MathSciNet  MATH  Google Scholar 

  20. Fröhlich, J., Knowles, A., Schwarz, S.: On the mean-field limit of Bosons with Coulomb two-body interaction. Commun. Math. Phys. 288(3), 1023–1059 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Ginibre, J., Velo, G.: The classical field limit of scattering theory for nonrelativistic many-boson systems I. Commun. Math. Phys. 66(1), 37–76 (1979)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Ginibre, J., Velo, G.: The classical field limit of scattering theory for nonrelativistic many-boson systems II. Commun. Math. Phys. 68(1), 45–68 (1979)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Giuliani, A., Seiringer, R.: The ground state energy of the weakly interacting Bose gas at high density. J. Stat. Phys. 135(5–6), 915–934 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Grech, P., Seiringer, R.: The excitation spectrum for weakly interacting bosons in a trap. Commun. Math. Phys. 322(2), 559–591 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Griesemer, M., Schmidt, J.: Well-posedness of non-autonomous linear evolution equations in uniformly convex spaces. Math. Nachr. 290(2–3), 435–441 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Grillakis, M., Machedon, M., Margetis, D.: Second order corrections to mean field evolution of weakly interacting bosons. I. Commun. Math. Phys. 294(1), 273–301 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Grillakis, M., Machedon, M., Margetis, D.: Second order corrections to mean field evolution of weakly interacting bosons. II. Adv. Math. 228(3), 1788–1815 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Grillakis, M., Machedon, M.: Pair excitations and the mean field approximation of interacting Bosons. I. Commun. Math. Phys. 324(2), 601–636 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Grillakis, M., Machedon, M.: Pair excitations and the mean field approximation of interacting Bosons. II. Commun. Part. Diff. Eq. 42(1), 24–67 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Hepp, K.: The classical limit for quantum mechanical correlation functions. Commun. Math. Phys. 35(4), 265–277 (1974)

    ADS  MathSciNet  Google Scholar 

  31. Jeblick, M., Leopold, N., Pickl, P.: Derivation of the time dependent Gross–Pitaevskii equation in two dimensions. Commun. Math. Phys. 372(1), 1–69 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Jeblick, M., Pickl, P.: Derivation of the time dependent Gross–Pitaevskii equation for a class of non purely positive potentials. (Preprint) (2018). arXiv:1801.04799v1

  33. Knowles, A., Pickl, P.: Mean-field dynamics: singular potentials and rate of convergence. Commun. Math. Phys. 298(1), 101–138 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Lewin, M., Nam, P.T., Rougerie, N.: Derivation of Hartree’s theory for generic mean-field Bose systems. Adv. Math. 254, 570–621 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Lewin, M., Nam, P.T., Schlein, B.: Fluctuations around Hartree states in the mean-field regime. Am. J. Math. 137(6), 1613–1650 (2015)

    MathSciNet  MATH  Google Scholar 

  36. Lewin, M., Nam, P.T., Serfaty, S., Solovej, J.P.: Bogoliubov spectrum of interacting Bose gases. Commun. Pure Appl. Math. 68(3), 413–471 (2015)

    MathSciNet  MATH  Google Scholar 

  37. Lieb, E.H., Seiringer, R., Solovej, J.P., Yngvason, J.: The mathematics of the Bose gas and its condensation. Oberwolfach Seminars, vol. 34. Birkhäuser Basel (2005)

  38. Lieb, E.H., Seiringer, R., Yngvason, J.: Bosons in a trap: a rigorous derivation of the Gross-Pitaevskii energy functional. Phys. Rev. A 61(4) (2000)

  39. Lieb, E.H., Solovej, J.P.: Ground state energy of the one-component charged Bose gas. Commun. Math. Phys. 217(1), 127–163 (2001). [Errata 225(1):219–221 (2002)]

    ADS  MathSciNet  MATH  Google Scholar 

  40. Lieb, E.H., Solovej, J.P.: Ground state energy of the two-component charged Bose gas. Commun. Math. Phys. 252(1–3), 485–534 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Lieb, E.H., Yngvason, J.: The ground state energy of a dilute two-dimensional Bose gas. J. Stat. Phys. 103, 509–526 (2001)

    MathSciNet  MATH  Google Scholar 

  42. Lührmann, J.: Mean-field quantum dynamics with magnetic fields. J. Math. Phys. 53, 022105 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Michelangeli, A., Schlein, B.: Dynamical collapse of Boson stars. Commun. Math. Phys. 311(3), 645–687 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  44. Mitrouskas, D., Petrat, S., Pickl, P.: Bogoliubov corrections and trace norm convergence for the Hartree dynamics. Rev. Math. Phys. 31(8), 1950024 (2019)

    MathSciNet  MATH  Google Scholar 

  45. Nam, P.T., Napiórkowski, M.: A note on the validity of Bogoliubov correction to mean-field dynamics. J. Math. Pures Appl. 108(5), 662–688 (2017)

    MathSciNet  MATH  Google Scholar 

  46. Nam, P.T., Napiórkowski, M.: Bogoliubov correction to the mean-field dynamics of interacting bosons. Adv. Theor. Math. Phys. 21(3), 683–738 (2017)

    MathSciNet  MATH  Google Scholar 

  47. Nam, P.T., Napiórkowski, M.: Norm approximation for many-body quantum dynamics and Bogoliubov theory. In: Michelangeli, A., Dell’Antonio, G. (eds.) Advances in Quantum Mechanics: Contemporary Trends and Open Problems, p. 18. Springer, New York (2017)

    Google Scholar 

  48. Nam, P.T., Napiórkowski, M.: Norm approximation for many-body quantum dynamics: focusing case in low dimensions. Adv. Math. 350, 547–587 (2019)

    MathSciNet  MATH  Google Scholar 

  49. Nam, P.T., Napiórkowski, M., Solovej, J.P.: Diagonalization of bosonic quadratic Hamiltonians by Bogoliubov transformations. J. Funct. Anal. 270(11), 4340–4368 (2016)

    MathSciNet  MATH  Google Scholar 

  50. Napiórkowski, M.: Recent advances in the theory of Bogoliubov Hamiltonians. In: Cadamuro, D., Duell, M., Dybalski, W., Simonella, S. (eds.) Macroscopic Limits of Quantum Systems. Springer Proceedings in Mathematics & Statistics, p. 270. Springer, New York (2018)

    Google Scholar 

  51. Pickl, P.: Derivation of the time dependent Gross–Pitaevskii equation without positivity condition on the interaction. J. Stat. Phys. 140(1), 76–89 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  52. Pickl, P.: A simple derivation of mean field limits for quantum systems. Lett. Math. Phys. 97(2), 151–164 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  53. Pickl, P.: Derivation of the time dependent Gross–Pitaevskii equation with external fields. Rev. Math. Phys. 27(1), 1550003 (2015)

    MathSciNet  MATH  Google Scholar 

  54. Rademacher, S.: Central limit theorem for Bose gases interacting through singular potentials. (Preprint) (2019). arXiv:1908.11672v1

  55. Rodnianski, I., Schlein, B.: Quantum fluctuations and rate of convergence towards mean field dynamics. Commun. Math. Phys. 291(1), 31–61 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  56. Seiringer, R.: The excitation spectrum for weakly interacting bosons. Commun. Math. Phys. 306(2), 565–578 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  57. Solovej, J.P.: Upper bounds to the ground state energies of the one- and two-component charged Bose gases. Commun. Math. Phys. 266(3), 797–818 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  58. Spohn, H.: Kinetic equations from Hamiltonian dynamics: Markovian limits. Rev. Mod. Phys. 53(3), 569–615 (1980)

    ADS  MathSciNet  Google Scholar 

  59. Yau, H.-T., Yin, J.: The second order upper bound for the ground energy of a bose gas. J. Stat. Phys. 136(3), 453–503 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful for the hospitality of the Institute for Advanced Study and Central China Normal University (CCNU), where parts of this work were done. The comments of the referees, which greatly improved this article, are especially acknowledged. We would like to thank Phan Thành Nam for helpful comments on the article and interesting discussions that led to Eq. (48). S. P. gratefully acknowledges support from the German Academic Exchange Service (DAAD) and the National Science Foundation under Agreement No. DMS-1128155 and thanks the University of Washington for hospitality. A. S. is partially supported by NSF DMS grant 01600749 and CNSF grant 11671163.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sören Petrat.

Additional information

Communicated by Alain Joye.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrat, S., Pickl, P. & Soffer, A. Derivation of the Bogoliubov Time Evolution for a Large Volume Mean-Field Limit. Ann. Henri Poincaré 21, 461–498 (2020). https://doi.org/10.1007/s00023-019-00878-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-019-00878-0

Mathematics Subject Classification

Navigation