Advertisement

Journal of High Energy Physics

, 2017:159 | Cite as

Entanglement shadows in LLM geometries

  • Vijay Balasubramanian
  • Albion Lawrence
  • Andrew Rolph
  • Simon F. Ross
Open Access
Regular Article - Theoretical Physics

Abstract

We find a new example of an asymptotically AdS5 × S5 geometry which has an entanglement shadow: that is, a region of spacetime which no Ryu-Takayanagi minimal surface enters. Our example is a particular case of the supersymmetric LLM geometries. Our results illustrate how minimal surfaces, which holographically geometrize entanglement entropy, can fail to probe the whole of spacetime, posing a challenge for attempts to directly reconstruct holographic geometries from the entanglement entropies of the dual field theory. We also comment on the relation to previous investigations of minimal surfaces localised in the S5 factor of AdS5 × S5.

Keywords

AdS-CFT Correspondence Gauge-gravity correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A Covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    T. Faulkner, M. Guica, T. Hartman, R.C. Myers and M. Van Raamsdonk, Gravitation from Entanglement in Holographic CFTs, JHEP 03 (2014) 051 [arXiv:1312.7856] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    B. Czech, L. Lamprou, S. McCandlish, B. Mosk and J. Sully, A Stereoscopic Look into the Bulk, JHEP 07 (2016) 129 [arXiv:1604.03110] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    J. de Boer, F.M. Haehl, M.P. Heller and R.C. Myers, Entanglement, holography and causal diamonds, JHEP 08 (2016) 162 [arXiv:1606.03307] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    V. Balasubramanian, B.D. Chowdhury, B. Czech, J. de Boer and M.P. Heller, Bulk curves from boundary data in holography, Phys. Rev. D 89 (2014) 086004 [arXiv:1310.4204] [INSPIRE].ADSGoogle Scholar
  7. [7]
    R.C. Myers, J. Rao and S. Sugishita, Holographic Holes in Higher Dimensions, JHEP 06 (2014) 044 [arXiv:1403.3416] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M. Headrick, R.C. Myers and J. Wien, Holographic Holes and Differential Entropy, JHEP 10 (2014) 149 [arXiv:1408.4770] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    V. Balasubramanian, B.D. Chowdhury, B. Czech and J. de Boer, Entwinement and the emergence of spacetime, JHEP 01 (2015) 048 [arXiv:1406.5859] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  10. [10]
    B. Freivogel, R.A. Jefferson, L. Kabir, B. Mosk and I.-S. Yang, Casting Shadows on Holographic Reconstruction, Phys. Rev. D 91 (2015) 086013 [arXiv:1412.5175] [INSPIRE].ADSGoogle Scholar
  11. [11]
    T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M theory as a matrix model: A Conjecture, Phys. Rev. D 55 (1997) 5112 [hep-th/9610043] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  12. [12]
    V. Balasubramanian, R. Gopakumar and F. Larsen, Gauge theory, geometry and the large-N limit, Nucl. Phys. B 526 (1998) 415 [hep-th/9712077] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    J. Polchinski, M theory and the light cone, Prog. Theor. Phys. Suppl. 134 (1999) 158 [hep-th/9903165] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    V. Balasubramanian, A. Bernamonti, B. Craps, T. De Jonckheere and F. Galli, Entwinement in discretely gauged theories, JHEP 12 (2016) 094 [arXiv:1609.03991] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    J. Lin, A Toy Model of Entwinement, arXiv:1608.02040 [INSPIRE].
  16. [16]
    H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025 [hep-th/0409174] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    V. Balasubramanian, B. Czech, K. Larjo and J. Simon, Integrability versus information loss: A Simple example, JHEP 11 (2006) 001 [hep-th/0602263] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    V. Balasubramanian, B. Czech, K. Larjo, D. Marolf and J. Simon, Quantum geometry and gravitational entropy, JHEP 12 (2007) 067 [arXiv:0705.4431] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    D. Berenstein and A. Miller, Superposition induced topology changes in quantum gravity, arXiv:1702.03011 [INSPIRE].
  20. [20]
    D. Berenstein and A. Miller, Reconstructing spacetime from the hologram, even in the classical limit, requires physics beyond the Planck scale, Int. J. Mod. Phys. D 25 (2016) 1644012 [arXiv:1605.05288] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    D. Berenstein and A. Miller, Can Topology and Geometry be Measured by an Operator Measurement in Quantum Gravity?, Phys. Rev. Lett. 118 (2017) 261601 [arXiv:1605.06166] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Mollabashi, N. Shiba and T. Takayanagi, Entanglement between Two Interacting CFTs and Generalized Holographic Entanglement Entropy, JHEP 04 (2014) 185 [arXiv:1403.1393] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    C.R. Graham and A. Karch, Minimal area submanifolds in AdS × compact, JHEP 04 (2014) 168 [arXiv:1401.7692] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    A. Karch and C.F. Uhlemann, Holographic entanglement entropy and the internal space, Phys. Rev. D 91 (2015) 086005 [arXiv:1501.00003] [INSPIRE].ADSGoogle Scholar
  25. [25]
    J. McGreevy, L. Susskind and N. Toumbas, Invasion of the giant gravitons from Anti-de Sitter space, JHEP 06 (2000) 008 [hep-th/0003075] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    T. Nishioka and T. Takayanagi, AdS Bubbles, Entropy and Closed String Tachyons, JHEP 01 (2007) 090 [hep-th/0611035] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    P.A.R. Jones and M. Taylor, Entanglement entropy in top-down models, JHEP 08 (2016) 158 [arXiv:1602.04825] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Vijay Balasubramanian
    • 1
    • 4
  • Albion Lawrence
    • 2
  • Andrew Rolph
    • 2
  • Simon F. Ross
    • 3
  1. 1.David Rittenhouse LaboratoriesUniversity of PennsylvaniaPhiladelphiaU.S.A.
  2. 2.Martin Fisher School of PhysicsBrandeis UniversityWalthamU.S.A.
  3. 3.Centre for Particle Theory, Department of Mathematical SciencesDurham UniversityDurhamU.K.
  4. 4.Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay InstitutesBrusselsBelgium

Personalised recommendations