Skip to main content

Towards a tensionless string field theory for the \( \mathcal{N}=\left(2,0\right) \) CFT in d = 6

A preprint version of the article is available at arXiv.

Abstract

We describe progress in using the field theory of tensionless strings to arrive at a Lagrangian for the six-dimensional \( \mathcal{N}=\left(2,0\right) \) conformal theory. We construct the free part of the theory and propose an ansatz for the cubic vertex in light-cone superspace. By requiring closure of the (2, 0) supersymmetry algebra, we fix the cubic vertex up to two parameters.

References

  1. [1]

    W. Nahm, Supersymmetries and their representations, Nucl. Phys. B 135 (1978) 149 [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    E. Witten, Some comments on string dynamics, in Future perspectives in string theory. Proceedings, Conference, Strings’95, Los Angeles, U.S.A., 13–18 March 1995, pg. 501 [hep-th/9507121] [INSPIRE].

  3. [3]

    A. Strominger, Open p-branes, Phys. Lett. B 383 (1996) 44 [hep-th/9512059] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  4. [4]

    G.W. Moore, Lecture notes for Felix Klein lectures, http://www.physics.rutgers.edu/~gmoore/FelixKleinLectureNotes.pdf, (2012).

  5. [5]

    K.G. Wilson and J.B. Kogut, The renormalization group and the ϵ-expansion, Phys. Rept. 12 (1974) 75 [INSPIRE].

  6. [6]

    A.M. Polyakov, Conformal symmetry of critical fluctuations, JETP Lett. 12 (1970) 381 [Pisma Zh. Eksp. Teor. Fiz. 12 (1970) 538] [INSPIRE].

  7. [7]

    O. Aharony, M. Berkooz, S. Kachru, N. Seiberg and E. Silverstein, Matrix description of interacting theories in six-dimensions, Adv. Theor. Math. Phys. 1 (1998) 148 [hep-th/9707079] [INSPIRE].

    Article  MATH  MathSciNet  Google Scholar 

  8. [8]

    O. Aharony, M. Berkooz and N. Seiberg, Light cone description of (2, 0) superconformal theories in six-dimensions, Adv. Theor. Math. Phys. 2 (1998) 119 [hep-th/9712117] [INSPIRE].

    Article  MATH  MathSciNet  Google Scholar 

  9. [9]

    N. Arkani-Hamed, A.G. Cohen, D.B. Kaplan, A. Karch and L. Motl, Deconstructing (2, 0) and little string theories, JHEP 01 (2003) 083 [hep-th/0110146] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  10. [10]

    M.R. Douglas, On D = 5 super Yang-Mills theory and (2, 0) theory, JHEP 02 (2011) 011 [arXiv:1012.2880] [INSPIRE].

    ADS  MATH  MathSciNet  Google Scholar 

  11. [11]

    N. Lambert, C. Papageorgakis and M. Schmidt-Sommerfeld, M5-branes, D4-branes and quantum 5D super-Yang-Mills, JHEP 01 (2011) 083 [arXiv:1012.2882] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  12. [12]

    P.-M. Ho, K.-W. Huang and Y. Matsuo, A non-Abelian self-dual gauge theory in 5 + 1 dimensions, JHEP 07 (2011) 021 [arXiv:1104.4040] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  13. [13]

    K.-W. Huang, R. Roiban and A.A. Tseytlin, Self-dual 6d 2-form fields coupled to non-Abelian gauge field: quantum corrections, JHEP 06 (2018) 134 [arXiv:1804.05059] [INSPIRE].

    ADS  Article  MathSciNet  MATH  Google Scholar 

  14. [14]

    H. Samtleben, E. Sezgin and R. Wimmer, (1, 0) superconformal models in six dimensions, JHEP 12 (2011) 062 [arXiv:1108.4060] [INSPIRE].

  15. [15]

    C.-S. Chu and S.-L. Ko, Non-Abelian action for multiple five-branes with self-dual tensors, JHEP 05 (2012) 028 [arXiv:1203.4224] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  16. [16]

    F. Bonetti, T.W. Grimm and S. Hohenegger, Non-Abelian tensor towers and (2, 0) superconformal theories, JHEP 05 (2013) 129 [arXiv:1209.3017] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  17. [17]

    C. Sämann and L. Schmidt, Towards an M5-brane model I: a 6d superconformal field theory, J. Math. Phys. 59 (2018) 043502 [arXiv:1712.06623] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  18. [18]

    C. Beem, M. Lemos, L. Rastelli and B.C. van Rees, The (2, 0) superconformal bootstrap, Phys. Rev. D 93 (2016) 025016 [arXiv:1507.05637] [INSPIRE].

    ADS  MATH  MathSciNet  Google Scholar 

  19. [19]

    S. Kovacs, Y. Sato and H. Shimada, Membranes from monopole operators in ABJM theory: large angular momentum and M-theoretic AdS 4 /CFT 3, PTEP 2014 (2014) 093B01 [arXiv:1310.0016] [INSPIRE].

  20. [20]

    S. Kovacs, Y. Sato and H. Shimada, On membrane interactions and a three-dimensional analog of Riemann surfaces, JHEP 02 (2016) 050 [arXiv:1508.03367] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  21. [21]

    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  22. [22]

    D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from N = 4 super Yang-Mills, JHEP 04 (2002) 013 [hep-th/0202021] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  23. [23]

    S. Mandelstam, Light cone superspace and the ultraviolet finiteness of the N = 4 model, Nucl. Phys. B 213 (1983) 149 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  24. [24]

    A.K.H. Bengtsson, I. Bengtsson and L. Brink, Cubic interaction terms for arbitrarily extended supermultiplets, Nucl. Phys. B 227 (1983) 41 [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    A. Sagnotti, Notes on strings and higher spins, J. Phys. A 46 (2013) 214006 [arXiv:1112.4285] [INSPIRE].

    ADS  MATH  MathSciNet  Google Scholar 

  26. [26]

    E. Witten, Noncommutative geometry and string field theory, Nucl. Phys. B 268 (1986) 253 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  27. [27]

    G. Bonelli, On the tensionless limit of bosonic strings, infinite symmetries and higher spins, Nucl. Phys. B 669 (2003) 159 [hep-th/0305155] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  28. [28]

    A. Schild, Classical null strings, Phys. Rev. D 16 (1977) 1722 [INSPIRE].

    ADS  Google Scholar 

  29. [29]

    F. Lizzi, B. Rai, G. Sparano and A. Srivastava, Quantization of the null string and absence of critical dimensions, Phys. Lett. B 182 (1986) 326 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  30. [30]

    A. Karlhede and U. Lindström, The classical bosonic string in the zero tension limit, Class. Quant. Grav. 3 (1986) L73 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  31. [31]

    U. Lindström, B. Sundborg and G. Theodoridis, The zero tension limit of the superstring, Phys. Lett. B 253 (1991) 319 [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    U. Lindström, B. Sundborg and G. Theodoridis, The zero tension limit of the spinning string, Phys. Lett. B 258 (1991) 331 [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    J. Isberg, U. Lindström and B. Sundborg, Space-time symmetries of quantized tensionless strings, Phys. Lett. B 293 (1992) 321 [hep-th/9207005] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  34. [34]

    J. Isberg, U. Lindström, B. Sundborg and G. Theodoridis, Classical and quantized tensionless strings, Nucl. Phys. B 411 (1994) 122 [hep-th/9307108] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  35. [35]

    H. Gustafsson, U. Lindström, P. Saltsidis, B. Sundborg and R. van Unge, Hamiltonian BRST quantization of the conformal string, Nucl. Phys. B 440 (1995) 495 [hep-th/9410143] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  36. [36]

    R. Amorim and J. Barcelos-Neto, Strings with zero tension, Z. Phys. C 38 (1988) 643 [INSPIRE].

    ADS  Google Scholar 

  37. [37]

    J. Gamboa, C. Ramirez and M. Ruiz-Altaba, Quantum null (super)strings, Phys. Lett. B 225 (1989) 335 [INSPIRE].

  38. [38]

    J. Gamboa, C. Ramirez and M. Ruiz-Altaba, Null spinning strings, Nucl. Phys. B 338 (1990) 143 [INSPIRE].

  39. [39]

    J. Barcelos-Neto and M. Ruiz-Altaba, Superstrings with zero tension, Phys. Lett. B 228 (1989) 193 [INSPIRE].

  40. [40]

    A. Bagchi, S. Chakrabortty and P. Parekh, Tensionless superstrings: view from the worldsheet, JHEP 10 (2016) 113 [arXiv:1606.09628] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  41. [41]

    A.K.H. Bengtsson, I. Bengtsson and L. Brink, Cubic interaction terms for arbitrary spin, Nucl. Phys. B 227 (1983) 31 [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    Y.S. Akshay and S. Ananth, Fermi-Bose cubic couplings in light-cone field theories, Phys. Rev. D 91 (2015) 085029 [arXiv:1504.00967] [INSPIRE].

    ADS  Google Scholar 

  43. [43]

    S. Ananth, Deriving field theories for particles of arbitrary spin with and without supersymmetry, in Proceedings, International Workshop on Higher Spin Gauge Theories, Singapore, 4–6 November 2015, World Scientific, Singapore, (2017), pg. 255 [arXiv:1603.02795] [INSPIRE].

  44. [44]

    S. Ananth, A. Kar, S. Majumdar and N. Shah, Deriving spin-1 quartic interaction vertices from closure of the Poincaré algebra, Nucl. Phys. B 926 (2018) 11 [arXiv:1707.05871] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  45. [45]

    L. Brink, O. Lindgren and B.E.W. Nilsson, N = 4 Yang-Mills theory on the light cone, Nucl. Phys. B 212 (1983) 401 [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    S. Ananth, L. Brink, S.-S. Kim and P. Ramond, Non-linear realization of PSU(2, 2|4) on the light-cone, Nucl. Phys. B 722 (2005) 166 [hep-th/0505234] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  47. [47]

    M.B. Green and J.H. Schwarz, Superstring interactions, Nucl. Phys. B 218 (1983) 43 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  48. [48]

    M.B. Green, J.H. Schwarz and L. Brink, Superfield theory of type II superstrings, Nucl. Phys. B 219 (1983) 437 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  49. [49]

    M.B. Green and J.H. Schwarz, The structure of superstring field theories, Phys. Lett. B 140 (1984) 33 [INSPIRE].

  50. [50]

    M.B. Green and J.H. Schwarz, Superstring field theory, Nucl. Phys. B 243 (1984) 475 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  51. [51]

    N. Linden, Lorentz generators in light cone gauge superstring field theory, Nucl. Phys. B 286 (1987) 429 [INSPIRE].

  52. [52]

    S. Mandelstam, Interacting string picture of dual resonance models, Nucl. Phys. B 64 (1973) 205 [INSPIRE].

    ADS  Article  Google Scholar 

  53. [53]

    S. Mandelstam, Lorentz properties of the three-string vertex, Nucl. Phys. B 83 (1974) 413 [INSPIRE].

    ADS  Article  Google Scholar 

  54. [54]

    M. Kaku and K. Kikkawa, The field theory of relativistic strings, 1. Trees, Phys. Rev. D 10 (1974) 1110 [INSPIRE].

  55. [55]

    M. Kaku and K. Kikkawa, The field theory of relativistic strings. 2. Loops and pomerons, Phys. Rev. D 10 (1974) 1823 [INSPIRE].

  56. [56]

    E. Cremmer and J.-L. Gervais, Combining and splitting relativistic strings, Nucl. Phys. B 76 (1974) 209 [INSPIRE].

  57. [57]

    E. Cremmer and J.-L. Gervais, Infinite component field theory of interacting relativistic strings and dual theory, Nucl. Phys. B 90 (1975) 410 [INSPIRE].

    ADS  Article  Google Scholar 

  58. [58]

    C. Marshall and P. Ramond, Field theory of the interacting string: the closed string, Nucl. Phys. B 85 (1975) 375 [INSPIRE].

    ADS  Article  Google Scholar 

  59. [59]

    A.K.H. Bengtsson and N. Linden, Interacting covariant open bosonic strings from the light cone J i−, Phys. Lett. B 187 (1987) 289 [INSPIRE].

    ADS  Article  Google Scholar 

  60. [60]

    T. Kugo, Lorentz transformation in the light cone gauge string field theory, Prog. Theor. Phys. 78 (1987) 690 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  61. [61]

    S.-J. Sin, Lorentz invariance of light cone string field theories, Nucl. Phys. B 306 (1988) 282 [INSPIRE].

    ADS  Article  Google Scholar 

  62. [62]

    Y. Saitoh and Y. Tanii, Lorentz symmetry in the light cone field theory of open and closed strings, Nucl. Phys. B 325 (1989) 161 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  63. [63]

    Y. Saitoh and Y. Tanii, Quantum Lorentz covariance in the light cone string field theory, Nucl. Phys. B 331 (1990) 744 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  64. [64]

    K. Kikkawa and S. Sawada, Cancellation of Lorentz anomaly of the string field theory in light cone gauge, Nucl. Phys. B 335 (1990) 677 [INSPIRE].

    ADS  Article  Google Scholar 

  65. [65]

    P. Ramond, private communication, unpublished.

  66. [66]

    S. Ananth, L. Brink and P. Ramond, unpublished.

  67. [67]

    P.S. Howe, G. Sierra and P.K. Townsend, Supersymmetry in six-dimensions, Nucl. Phys. B 221 (1983) 331 [INSPIRE].

  68. [68]

    J.A. Strathdee, Extended Poincaré supersymmetry, Int. J. Mod. Phys. A 2 (1987) 273 [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  69. [69]

    P. Goddard, J. Goldstone, C. Rebbi and C.B. Thorn, Quantum dynamics of a massless relativistic string, Nucl. Phys. B 56 (1973) 109 [INSPIRE].

    ADS  Article  Google Scholar 

  70. [70]

    L. Brink, O. Lindgren and B.E.W. Nilsson, The ultraviolet finiteness of the N = 4 Yang-Mills theory, Phys. Lett. B 123 (1983) 323 [INSPIRE].

    ADS  Article  Google Scholar 

  71. [71]

    P. Claus, R. Kallosh and A. Van Proeyen, M5-brane and superconformal (0, 2) tensor multiplet in six-dimensions, Nucl. Phys. B 518 (1998) 117 [hep-th/9711161] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  72. [72]

    R. Giles and C.B. Thorn, A lattice approach to string theory, Phys. Rev. D 16 (1977) 366 [INSPIRE].

    ADS  Google Scholar 

  73. [73]

    C.B. Thorn, Reformulating string theory with the 1/N expansion, in The First International A.D. Sakharov Conference on Physics, Moscow, U.S.S.R., 27–31 May 1991, pg. 447 [hep-th/9405069] [INSPIRE].

  74. [74]

    Yu. M. Makeenko and A.A. Migdal, Exact equation for the loop average in multicolor QCD, Phys. Lett. B 88 (1979) 135 [Erratum ibid. B 89 (1980) 437] [INSPIRE].

  75. [75]

    Yu. Makeenko and A.A. Migdal, Quantum chromodynamics as dynamics of loops, Nucl. Phys. B 188 (1981) 269 [Sov. J. Nucl. Phys. 32 (1980) 431] [Yad. Fiz. 32 (1980) 838] [INSPIRE].

  76. [76]

    A.A. Migdal, Loop equations and 1/N expansion, Phys. Rept. 102 (1983) 199 [INSPIRE].

    ADS  Article  Google Scholar 

  77. [77]

    N. Drukker, D.J. Gross and H. Ooguri, Wilson loops and minimal surfaces, Phys. Rev. D 60 (1999) 125006 [hep-th/9904191] [INSPIRE].

  78. [78]

    N. Drukker, A new type of loop equations, JHEP 11 (1999) 006 [hep-th/9908113] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  79. [79]

    A.M. Polyakov and V.S. Rychkov, Gauge field strings duality and the loop equation, Nucl. Phys. B 581 (2000) 116 [hep-th/0002106] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  80. [80]

    A.M. Polyakov and V.S. Rychkov, Loop dynamics and AdS/CFT correspondence, Nucl. Phys. B 594 (2001) 272 [hep-th/0005173] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  81. [81]

    G.W. Semenoff and D. Young, Wavy Wilson line and AdS/CFT, Int. J. Mod. Phys. A 20 (2005) 2833 [hep-th/0405288] [INSPIRE].

  82. [82]

    H. Hata and A. Miwa, Loop equation in D = 4, N = 4 SYM and string field equation on AdS 5 × S5, Phys. Rev. D 73 (2006) 046001 [hep-th/0510150] [INSPIRE].

    ADS  Google Scholar 

  83. [83]

    J. Polchinski and J. Sully, Wilson loop renormalization group flows, JHEP 10 (2011) 059 [arXiv:1104.5077] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  84. [84]

    H. Kunitomo and S. Mizoguchi, Lorentz anomaly in the semi-light-cone gauge superstrings, Prog. Theor. Phys. 118 (2007) 559 [arXiv:0706.3982] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  85. [85]

    W. Taylor, D-brane field theory on compact spaces, Phys. Lett. B 394 (1997) 283 [hep-th/9611042] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  86. [86]

    N. Seiberg, New theories in six-dimensions and matrix description of M-theory on T 5 and T 5/Z 2, Phys. Lett. B 408 (1997) 98 [hep-th/9705221] [INSPIRE].

    ADS  Article  Google Scholar 

  87. [87]

    O. Aharony, A brief review oflittle string theories’, Class. Quant. Grav. 17 (2000) 929 [hep-th/9911147] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  88. [88]

    M.B. Green and N. Seiberg, Contact interactions in superstring theory, Nucl. Phys. B 299 (1988) 559 [INSPIRE].

  89. [89]

    J. Greensite and F.R. Klinkhamer, New interactions for superstrings, Nucl. Phys. B 281 (1987) 269 [INSPIRE].

  90. [90]

    J. Greensite and F.R. Klinkhamer, Contact interactions in closed superstring field theory, Nucl. Phys. B 291 (1987) 557 [INSPIRE].

    ADS  Article  Google Scholar 

  91. [91]

    J. Greensite and F.R. Klinkhamer, Superstring amplitudes and contact interactions, Nucl. Phys. B 304 (1988) 108 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  92. [92]

    B. de Wit, J. Hoppe and H. Nicolai, On the quantum mechanics of supermembranes, Nucl. Phys. B 305 (1988) 545 [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  93. [93]

    T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M theory as a matrix model: a conjecture, Phys. Rev. D 55 (1997) 5112 [hep-th/9610043] [INSPIRE].

    ADS  MATH  MathSciNet  Google Scholar 

  94. [94]

    J. Goldstone, unpublished, (1982).

  95. [95]

    J. Hoppe, Quantum theory of a massless relativistic surface and a two-dimensional bound state problem, Ph.D. thesis, M.I.T., U.S.A., (1982).

  96. [96]

    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  97. [97]

    D. Friedan, E.J. Martinec and S.H. Shenker, Conformal invariance, supersymmetry and string theory, Nucl. Phys. B 271 (1986) 93 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hidehiko Shimada.

Additional information

ArXiv ePrint: 1805.10297

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ananth, S., Kovacs, S., Sato, Y. et al. Towards a tensionless string field theory for the \( \mathcal{N}=\left(2,0\right) \) CFT in d = 6. J. High Energ. Phys. 2018, 135 (2018). https://doi.org/10.1007/JHEP07(2018)135

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2018)135

Keywords

  • Conformal Field Theory
  • Field Theories in Higher Dimensions
  • M-Theory
  • String Field Theory