Skip to main content
Log in

Non-Abelian tensor towers and (2,0) superconformal theories

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

With the aim to study six-dimensional (2, 0) superconformal theories with non-Abelian tensor multiplets we propose a five-dimensional superconformal action with eight supersymmetries for an infinite tower of non-Abelian vector, tensor and hypermultiplets. It describes the dynamics of the complete spectrum of the (2, 0) theories compactified on a circle coupled to an additional vector multiplet containing the circle radius and the Kaluza-Klein vector arising from the six-dimensional metric. All couplings are only given in terms of group theoretical constants and the Kaluza-Klein levels. After superconformal symmetry is reduced to Poincaré supersymmetry we find a Kaluza-Klein inspired action coupling super-Yang-Mills theory to an infinite tower of massive non-Abelian tensors. We explore the possibility to restore sixteen supersymmetries by using techniques known from harmonic superspace. Namely, additional bosonic coordinates on a four-sphere are introduced to enhance the R-symmetry group. Maximally supersymmetric Yang-Mills theories and the Abelian (2, 0) tensor theories are recovered as special cases of our construction. Finally, we comment on the generation of an anomaly balancing Wess-Zumino term for the R-symmetry vector at one loop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Witten, Some comments on string dynamics, hep-th/9507121 [INSPIRE].

  2. E. Witten, Five-branes and M-theory on an orbifold, Nucl. Phys. B 463 (1996) 383 [hep-th/9512219] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. N. Seiberg, New theories in six-dimensions and matrix description of M-theory on T 5 and \( {{{{T^5}}} \left/ {{{{\mathbb{Z}}_2}}} \right.} \), Phys. Lett. B 408 (1997) 98 [hep-th/9705221] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. O. Aharony, M. Berkooz, S. Kachru, N. Seiberg and E. Silverstein, Matrix description of interacting theories in six-dimensions, Adv. Theor. Math. Phys. 1 (1998) 148 [hep-th/9707079] [INSPIRE].

    MathSciNet  Google Scholar 

  5. O. Aharony, M. Berkooz and N. Seiberg, Light cone description of (2, 0) superconformal theories in six-dimensions, Adv. Theor. Math. Phys. 2 (1998) 119 [hep-th/9712117] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  6. R.G. Leigh and M. Rozali, The Large-N limit of the (2, 0) superconformal field theory, Phys. Lett. B 431 (1998) 311 [hep-th/9803068] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  7. O. Ganor and L. Motl, Equations of the (2, 0) theory and knitted five-branes, JHEP 05 (1998) 009 [hep-th/9803108] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. J.A. Harvey, R. Minasian and G.W. Moore, NonAbelian tensor multiplet anomalies, JHEP 09 (1998) 004 [hep-th/9808060] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. K.A. Intriligator, Anomaly matching and a Hopf-Wess-Zumino term in 6d, N = (2, 0) field theories, Nucl. Phys. B 581 (2000) 257 [hep-th/0001205] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. N. Seiberg, Notes on theories with 16 supercharges, Nucl. Phys. Proc. Suppl. 67 (1998) 158 [hep-th/9705117] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. E. Witten, Geometric Langlands From Six Dimensions, arXiv:0905.2720 [INSPIRE].

  12. D. Gaiotto, G.W. Moore and A. Neitzke, Framed BPS states, arXiv:1006.0146 [INSPIRE].

  13. N. Marcus and J.H. Schwarz, Field theories that have no manifestly Lorentz invariant formulation, Phys. Lett. B 115 (1982) 111 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  14. W. Siegel, Manifest Lorentz invariance sometimes requires nonlinearity, Nucl. Phys. B 238 (1984) 307 [INSPIRE].

    Article  ADS  Google Scholar 

  15. M. Henneaux and C. Teitelboim, dynamics of chiral (selfdual) P forms, Phys. Lett. B 206 (1988) 650 [INSPIRE].

    ADS  Google Scholar 

  16. B. McClain, F. Yu and Y. Wu, Covariant quantization of chiral bosons and OSp(1, 1|2) symmetry, Nucl. Phys. B 343 (1990) 689 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. P. Pasti, D.P. Sorokin and M. Tonin, On Lorentz invariant actions for chiral p forms, Phys. Rev. D 55 (1997) 6292 [hep-th/9611100] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  18. D. Belov and G.W. Moore, Holographic action for the self-dual field, hep-th/0605038 [INSPIRE].

  19. P. Townsend, K. Pilch and P. van Nieuwenhuizen, Selfduality in odd dimensions, Phys. Lett. B 136 (1984) 38 [Addendum ibid. B 137 (1984) 443] [INSPIRE].

  20. F. Bonetti, T.W. Grimm and S. Hohenegger, A Kaluza-Klein inspired action for chiral p-forms and their anomalies, Phys. Lett. B 720 (2013) 424 [arXiv:1206.1600] [INSPIRE].

    ADS  Google Scholar 

  21. N. Lambert and C. Papageorgakis, Nonabelian (2, 0) tensor multiplets and 3-algebras, JHEP 08 (2010) 083 [arXiv:1007.2982] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. P.-M. Ho, K.-W. Huang and Y. Matsuo, A non-Abelian self-dual gauge theory in 5 + 1 dimensions, JHEP 07 (2011) 021 [arXiv:1104.4040] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. K.-W. Huang, Non-Abelian chiral 2-form and M5-branes, arXiv:1206.3983 [INSPIRE].

  24. N. Lambert and P. Richmond, (2, 0) supersymmetry and the light-cone description of M5-branes, JHEP 02 (2012) 013 [arXiv:1109.6454] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. H. Linander and F. Ohlsson, (2, 0) theory on circle fibrations, JHEP 01 (2012) 159 [arXiv:1111.6045] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. C.-S. Chu and S.-L. Ko, Non-Abelian action for multiple five-branes with self-dual tensors, JHEP 05 (2012) 028 [arXiv:1203.4224] [INSPIRE].

    Article  ADS  Google Scholar 

  27. C.-S. Chu, S.-L. Ko and P. Vanichchapongjaroen, Non-Abelian self-dual string solutions, JHEP 09 (2012) 018 [arXiv:1207.1095] [INSPIRE].

    Article  ADS  Google Scholar 

  28. S. Palmer and C. Sämann, M-brane models from non-Abelian gerbes, JHEP 07 (2012) 010 [arXiv:1203.5757] [INSPIRE].

    Article  ADS  Google Scholar 

  29. P.-M. Ho and Y. Matsuo, Note on non-Abelian two-form gauge fields, JHEP 09 (2012) 075 [arXiv:1206.5643] [INSPIRE].

    Article  ADS  Google Scholar 

  30. E. Bergshoeff et al., Weyl multiplets of N = 2 conformal supergravity in five-dimensions, JHEP 06 (2001) 051 [hep-th/0104113] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. E. Bergshoeff et al., Superconformal N = 2, D = 5 matter with and without actions, JHEP 10 (2002) 045 [hep-th/0205230] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. E. Cremmer, Supergravities in 5 dimensions, in Supergravities in diverse dimensions. Vol. 1, A. Salam and E. Sezgin eds., World Scientific, Singapore (1989), pg. 422 [in Superspace and supergravity. Proceedings of the Nuffield Workshop, Cambridge University Press, Cambridge U.K. (1980), pg. 267].

  33. M. Günaydin, G. Sierra and P. Townsend, The geometry of N = 2 Maxwell-Einstein supergravity and Jordan algebras, Nucl. Phys. B 242 (1984) 244 [INSPIRE].

    Article  ADS  Google Scholar 

  34. M. Günaydin, G. Sierra and P. Townsend, Gauging the D = 5 Maxwell-Einstein supergravity theories: more on Jordan algebras, Nucl. Phys. B 253 (1985) 573 [INSPIRE].

    Article  ADS  Google Scholar 

  35. M. Günaydin and M. Zagermann, The gauging of five-dimensional, N = 2 Maxwell-Einstein supergravity theories coupled to tensor multiplets, Nucl. Phys. B 572 (2000) 131 [hep-th/9912027] [INSPIRE].

    Article  ADS  Google Scholar 

  36. A. Ceresole and G. Dall’Agata, General matter coupled N = 2, D = 5 gauged supergravity, Nucl. Phys. B 585 (2000) 143 [hep-th/0004111] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. E. Bergshoeff et al., N = 2 supergravity in five-dimensions revisited, Class. Quant. Grav. 21 (2004) 3015 [Class. Quant. Grav. 23 (2006) 7149] [hep-th/0403045] [INSPIRE].

  38. H. Samtleben, E. Sezgin and R. Wimmer, (1, 0) superconformal models in six dimensions, JHEP 12 (2011) 062 [arXiv:1108.4060] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. H. Samtleben, E. Sezgin, R. Wimmer and L. Wulff, New superconformal models in six dimensions: Gauge group and representation structure, PoS(CORFU2011)071 [arXiv:1204.0542] [INSPIRE].

  40. M. Akyol and G. Papadopoulos, (1, 0) superconformal theories in six dimensions and Killing spinor equations, JHEP 07 (2012) 070 [arXiv:1204.2167] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. M.R. Douglas, On D = 5 super Yang-Mills theory and (2, 0) theory, JHEP 02 (2011) 011 [arXiv:1012.2880] [INSPIRE].

    ADS  Google Scholar 

  42. N. Lambert, C. Papageorgakis and M. Schmidt-Sommerfeld, M5-Branes, D4-branes and Quantum 5D super-Yang-Mills, JHEP 01 (2011) 083 [arXiv:1012.2882] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. M. Awada and P. Townsend, N = 4 Maxwell-Einstein supergravity in five-dimensions and its SU(2) gauging, Nucl. Phys. B 255 (1985) 617 [INSPIRE].

    Article  ADS  Google Scholar 

  44. M. Günaydin, L. Romans and N. Warner, Compact and Noncompact Gauged Supergravity Theories in Five-Dimensions, Nucl. Phys. B 272 (1986) 598 [INSPIRE].

    Article  ADS  Google Scholar 

  45. G. Dall’Agata, C. Herrmann and M. Zagermann, General matter coupled N = 4 gauged supergravity in five-dimensions, Nucl. Phys. B 612 (2001) 123 [hep-th/0103106] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. J. Schön and M. Weidner, Gauged N = 4 supergravities, JHEP 05 (2006) 034 [hep-th/0602024] [INSPIRE].

    Article  ADS  Google Scholar 

  47. A. Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky and E. Sokatchev, Unconstrained N = 2 Matter, Yang-Mills and Supergravity Theories in Harmonic Superspace, Class. Quant. Grav. 1 (1984) 469 [INSPIRE].

    Article  ADS  Google Scholar 

  48. E. Ivanov, S. Kalitsyn, A.V. Nguyen and V. Ogievetsky, Harmonic superspaces of extended supersymmetry. The calculus of harmonic variables, J. Phys. A 18 (1985) 3433 [INSPIRE].

    ADS  Google Scholar 

  49. A. Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky and E. Sokatchev, Unconstrained off-shell N =3 supersymmetric Yang-Mills theory, Class. Quant. Grav. 2 (1985) 155[INSPIRE].

    Article  ADS  MATH  Google Scholar 

  50. G. Hartwell and P.S. Howe, (N,p,q) harmonic superspace, Int. J. Mod. Phys. A 10 (1995) 3901 [hep-th/9412147] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  51. P.S. Howe and G. Hartwell, A superspace survey, Class. Quant. Grav. 12 (1995) 1823 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. A. Galperin, E. Ivanov, V. Ogievetsky and E. Sokatchev, Harmonic Superspace, Cambridge University Press, Cambridge U.K. (2001) pg. 306.

  53. F. Bonetti, T.W. Grimm and S. Hohenegger, One-loop Chern-Simons terms in five dimensions, arXiv:1302.2918 [INSPIRE].

  54. G. ’t Hooft, Recent Developments in Gauge Theories, G. ’t Hooft et al. eds., Plenum Press, New York U.S.A. (1980).

  55. M. Henningson and K. Skenderis, The Holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  56. F. Bastianelli, S. Frolov and A.A. Tseytlin, Conformal anomaly of (2,0) tensor multiplet in six-dimensions and AdS/CFT correspondence, JHEP 02 (2000) 013 [hep-th/0001041] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  57. P. Yi, Anomaly of (2, 0) theories, Phys. Rev. D 64 (2001) 106006 [hep-th/0106165] [INSPIRE].

    ADS  Google Scholar 

  58. T. Maxfield and S. Sethi, The conformal anomaly of M5-branes, JHEP 06 (2012) 075 [arXiv:1204.2002] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. I.R. Klebanov and A.A. Tseytlin, Entropy of near extremal black p-branes, Nucl. Phys. B 475 (1996) 164 [hep-th/9604089] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  60. S. Bolognesi and K. Lee, 1/4 BPS String Junctions and N 3 Problem in 6-dim (2, 0) Superconformal Theories, Phys. Rev. D 84 (2011) 126018 [arXiv:1105.5073] [INSPIRE].

    ADS  Google Scholar 

  61. S. Bolognesi and K. Lee, Instanton Partons in 5-dim SU(N) Gauge Theory, Phys. Rev. D 84 (2011) 106001 [arXiv:1106.3664] [INSPIRE].

    ADS  Google Scholar 

  62. H.-C. Kim, S. Kim, E. Koh, K. Lee and S. Lee, On instantons as Kaluza-Klein modes of M5-branes, JHEP 12 (2011) 031 [arXiv:1110.2175] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  63. H.-C. Kim and S. Kim, M5-branes from gauge theories on the 5-sphere, arXiv:1206.6339 [INSPIRE].

  64. J. Kallen, J. Minahan, A. Nedelin and M. Zabzine, N 3 -behavior from 5D Yang-Mills theory, JHEP 10 (2012) 184 [arXiv:1207.3763] [INSPIRE].

    Article  ADS  Google Scholar 

  65. V. Kac, Lie superalgebras, Adv. Math. 26 (1977) 8 [INSPIRE].

    Article  MATH  Google Scholar 

  66. V. Kac, A sketch of Lie superalgebra theory, Commun. Math. Phys. 53 (1977) 31 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  67. W. Nahm, Supersymmetries and their representations, Nucl. Phys. B 135 (1978) 149 [INSPIRE].

    Article  ADS  Google Scholar 

  68. P. Claus, R. Kallosh and A. Van Proeyen, M five-brane and superconformal (0, 2) tensor multiplet in six-dimensions, Nucl. Phys. B 518 (1998) 117 [hep-th/9711161] [INSPIRE].

    Article  ADS  Google Scholar 

  69. E. Bergshoeff, E. Sezgin and A. Van Proeyen, (2, 0) tensor multiplets and conformal supergravity in D = 6, Class. Quant. Grav. 16 (1999) 3193 [hep-th/9904085] [INSPIRE].

    Article  ADS  Google Scholar 

  70. V.K. Dobrev, Positive energy unitary irreducible representations of D = 6 conformal supersymmetry, J. Phys. A 35 (2002) 7079 [hep-th/0201076] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  71. L. Breen and W. Messing, Differential geometry of GERBES, Adv. Math. 198 (2005) 732 [math/0106083] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  72. J.C. Baez and J. Huerta, An invitation to higher gauge theory, arXiv:1003.4485 [INSPIRE].

  73. C. Sämann and M. Wolf, On twistors and conformal field theories from six dimensions, J. Math. Phys. 54 (2013) 013507 [arXiv:1111.2539] [INSPIRE].

    Article  ADS  Google Scholar 

  74. C. Sämann and M. Wolf, Non-Abelian tensor multiplet equations from twistor space, arXiv:1205.3108 [INSPIRE].

  75. P.S. Howe, Off-shell N = 2 and N = 4 supergravity in five-dimensions, CERN-TH-3181.

  76. K.-M. Lee and J.-H. Park, 5 − D actions for 6 − D selfdual tensor field theory, Phys. Rev. D 64 (2001) 105006 [hep-th/0008103] [INSPIRE].

    ADS  Google Scholar 

  77. I. Antoniadis, S. Hohenegger, K. Narain and E. Sokatchev, Harmonicity in N = 4 supersymmetry and its quantum anomaly, Nucl. Phys. B 794 (2008) 348 [arXiv:0708.0482] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  78. I. Antoniadis, S. Hohenegger, K. Narain and E. Sokatchev, A new class of N = 2 topological amplitudes, Nucl. Phys. B 823 (2009) 448 [arXiv:0905.3629] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  79. I. Antoniadis, S. Hohenegger, K. Narain and E. Sokatchev, Generalized N = 2 topological amplitudes and holomorphic anomaly equation, Nucl. Phys. B 856 (2012) 360 [arXiv:1107.0303] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  80. I. Antoniadis and S. Hohenegger, N = 4 topological amplitudes and black hole entropy, Nucl. Phys. B 837 (2010) 61 [arXiv:0910.5596] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  81. I. Antoniadis and S. Hohenegger, Topological amplitudes and physical couplings in string theory, Nucl. Phys. Proc. Suppl. 171 (2007) 176 [hep-th/0701290] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  82. S. Hohenegger and S. Stieberger, BPS Saturated String Amplitudes: K3 Elliptic Genus and Igusa Cusp Form, Nucl. Phys. B 856 (2012) 413 [arXiv:1108.0323] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  83. I. Buchbinder, O. Lechtenfeld and I. Samsonov, N = 4 superparticle and super Yang-Mills theory in USp(4) harmonic superspace, Nucl. Phys. B 802 (2008) 208 [arXiv:0804.3063] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  84. D.V. Belyaev and I.B. Samsonov, Wess-Zumino term in the N = 4 SYM effective action revisited, JHEP 04 (2011) 112 [arXiv:1103.5070] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  85. B. Czech, Y.-t. Huang and M. Rozali, Chiral three-point interactions in 5 and 6 dimensions, JHEP 10 (2012) 143 [arXiv:1110.2791] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas W. Grimm.

Additional information

ArXiv ePrint: 1209.3017

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonetti, F., Grimm, T.W. & Hohenegger, S. Non-Abelian tensor towers and (2,0) superconformal theories. J. High Energ. Phys. 2013, 129 (2013). https://doi.org/10.1007/JHEP05(2013)129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2013)129

Keywords

Navigation