Advertisement

Calibrated entanglement entropy

  • I. Bakhmatov
  • N. S. Deger
  • J. Gutowski
  • E. Ó ColgáinEmail author
  • H. Yavartanoo
Open Access
Regular Article - Theoretical Physics

Abstract

The Ryu-Takayanagi prescription reduces the problem of calculating entanglement entropy in CFTs to the determination of minimal surfaces in a dual anti-de Sitter geometry. For 3D gravity theories and BTZ black holes, we identify the minimal surfaces as special Lagrangian cycles calibrated by the real part of the holomorphic one-form of a spacelike hypersurface. We show that (generalised) calibrations provide a unified way to determine holographic entanglement entropy from minimal surfaces, which is applicable to warped AdS3 geometries. We briefly discuss generalisations to higher dimensions.

Keywords

AdS-CFT Correspondence Gauge-gravity correspondence Holography and condensed matter physics (AdS/CMT) 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  2. [2]
    S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  3. [3]
    C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  4. [4]
    P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].zbMATHGoogle Scholar
  5. [5]
    P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42 (2009) 504005 [arXiv:0905.4013] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  6. [6]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A Covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  7. [7]
    H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  8. [8]
    T. Hartman, Entanglement entropy at large central charge, arXiv:1303.6955 [INSPIRE].
  9. [9]
    T. Faulkner, The entanglement Rényi entropies of disjoint intervals in AdS/CFT, arXiv:1303.7221 [INSPIRE].
  10. [10]
    A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090 [arXiv:1304.4926] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  11. [11]
    X. Dong, A. Lewkowycz and M. Rangamani, Deriving covariant holographic entanglement, JHEP 11 (2016) 028 [arXiv:1607.07506] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  12. [12]
    M.M. Sheikh-Jabbari and H. Yavartanoo, Excitation entanglement entropy in two dimensional conformal field theories, Phys. Rev. D 94 (2016) 126006 [arXiv:1605.00341] [INSPIRE].ADSGoogle Scholar
  13. [13]
    R. Harvey and Jr. H.B. Lawson, Calibrated geometries, Acta Math. 148 (1982) 47.Google Scholar
  14. [14]
    F.R. Harvey, Spinors and calibrations, Academic Press, U.S.A. (1990).zbMATHGoogle Scholar
  15. [15]
    K. Becker, M. Becker and A. Strominger, Five-branes, membranes and nonperturbative string theory, Nucl. Phys. B 456 (1995) 130 [hep-th/9507158] [INSPIRE].CrossRefzbMATHADSGoogle Scholar
  16. [16]
    K. Becker, M. Becker, D.R. Morrison, H. Ooguri, Y. Oz and Z. Yin, Supersymmetric cycles in exceptional holonomy manifolds and Calabi-Yau 4 folds, Nucl. Phys. B 480 (1996) 225 [hep-th/9608116] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  17. [17]
    G.W. Gibbons and G. Papadopoulos, Calibrations and intersecting branes, Commun. Math. Phys. 202 (1999) 593 [hep-th/9803163] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  18. [18]
    J.P. Gauntlett, N.D. Lambert and P.C. West, Branes and calibrated geometries, Commun. Math. Phys. 202 (1999) 571 [hep-th/9803216] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  19. [19]
    J.P. Gauntlett, D. Martelli and D. Waldram, Superstrings with intrinsic torsion, Phys. Rev. D 69 (2004) 086002 [hep-th/0302158] [INSPIRE].MathSciNetADSGoogle Scholar
  20. [20]
    D. Martelli and J. Sparks, G structures, fluxes and calibrations in M-theory, Phys. Rev. D 68 (2003) 085014 [hep-th/0306225] [INSPIRE].MathSciNetADSGoogle Scholar
  21. [21]
    E.J. Hackett-Jones and D.J. Smith, Type IIB Killing spinors and calibrations, JHEP 11 (2004) 029 [hep-th/0405098] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  22. [22]
    L. Martucci and P. Smyth, Supersymmetric D-branes and calibrations on general N = 1 backgrounds, JHEP 11 (2005) 048 [hep-th/0507099] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  23. [23]
    J.P. Gauntlett, E. O Colgain and O. Varela, Properties of some conformal field theories with M-theory duals, JHEP 02 (2007) 049 [hep-th/0611219] [INSPIRE].
  24. [24]
    O. de Felice and J. Geipel, Generalised Calibrations in AdS backgrounds from Exceptional Sasaki-Einstein Structures, arXiv:1704.05949 [INSPIRE].
  25. [25]
    J. Dadok and R. Harvey, Calibrations and spinors, Acta Math. 170 (1993) 83.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    M.M. Sheikh-Jabbari and H. Yavartanoo, On 3d bulk geometry of Virasoro coadjoint orbits: orbit invariant charges and Virasoro hair on locally AdS 3 geometries, Eur. Phys. J. C 76 (2016) 493 [arXiv:1603.05272] [INSPIRE].CrossRefADSGoogle Scholar
  27. [27]
    E. Colgáin and H. Yavartanoo, Bañados and SUSY: on supersymmetry and minimal surfaces of locally AdS 3 geometries, Class. Quant. Grav. 34 (2017) 095008 [arXiv:1610.05638] [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    J. Gutowski and G. Papadopoulos, AdS calibrations, Phys. Lett. B 462 (1999) 81 [hep-th/9902034] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  29. [29]
    J. Gutowski, G. Papadopoulos and P.K. Townsend, Supersymmetry and generalized calibrations, Phys. Rev. D 60 (1999) 106006 [hep-th/9905156] [INSPIRE].MathSciNetADSGoogle Scholar
  30. [30]
    W. Li and T. Takayanagi, Holography and entanglement in flat spacetime, Phys. Rev. Lett. 106 (2011) 141301 [arXiv:1010.3700] [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    J. Maldacena and G.L. Pimentel, Entanglement entropy in de Sitter space, JHEP 02 (2013) 038 [arXiv:1210.7244] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  32. [32]
    D. Anninos, J. Samani and E. Shaghoulian, Warped entanglement entropy, JHEP 02 (2014) 118 [arXiv:1309.2579] [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    S.A. Gentle and C. Keeler, On the reconstruction of Lifshitz spacetimes, JHEP 03 (2016) 195 [arXiv:1512.04538] [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    S. Detournay, T. Hartman and D.M. Hofman, Warped conformal field theory, Phys. Rev. D 86 (2012) 124018 [arXiv:1210.0539] [INSPIRE].ADSGoogle Scholar
  35. [35]
    D. Anninos, W. Li, M. Padi, W. Song and A. Strominger, Warped AdS 3 black holes, JHEP 03 (2009) 130 [arXiv:0807.3040] [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    G. Compère, M. Guica and M.J. Rodriguez, Two Virasoro symmetries in stringy warped AdS 3, JHEP 12 (2014) 012 [arXiv:1407.7871] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    W. Song, Q. Wen and J. Xu, Generalized gravitational entropy for warped Anti-de Sitter space, Phys. Rev. Lett. 117 (2016) 011602 [arXiv:1601.02634] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  38. [38]
    W. Song, Q. Wen and J. Xu, Modifications to holographic entanglement entropy in warped CFT, JHEP 02 (2017) 067 [arXiv:1610.00727] [INSPIRE].CrossRefADSGoogle Scholar
  39. [39]
    S. Detournay and M. Guica, Stringy Schrödinger truncations, JHEP 08 (2013) 121 [arXiv:1212.6792] [INSPIRE].CrossRefzbMATHADSGoogle Scholar
  40. [40]
    M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  41. [41]
    M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev. D 48 (1993) 1506 [Erratum ibid. D 88 (2013) 069902] [gr-qc/9302012] [INSPIRE].
  42. [42]
    R. Courant and D. Hilbert, Methods of mathematical physics, volume II, John Wiley, U.S.A. (1962).Google Scholar
  43. [43]
    Y. Nutku, Exact solutions of topologically massive gravity with a cosmological constant, Class. Quant. Grav. 10 (1993) 2657 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  44. [44]
    M. Gürses, Perfect fluid sources in 2 + 1 dimensions, Class. Quant. Grav. 11 (1994) 2585.MathSciNetCrossRefzbMATHADSGoogle Scholar
  45. [45]
    A. Bouchareb and G. Clement, Black hole mass and angular momentum in topologically massive gravity, Class. Quant. Grav. 24 (2007) 5581 [arXiv:0706.0263] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  46. [46]
    J.M. Bardeen and G.T. Horowitz, The extreme Kerr throat geometry: a vacuum analog of AdS 2 × S 2, Phys. Rev. D 60 (1999) 104030 [hep-th/9905099] [INSPIRE].ADSGoogle Scholar
  47. [47]
    I. Bengtsson and P. Sandin, Anti de Sitter space, squashed and stretched, Class. Quant. Grav. 23 (2006) 971 [gr-qc/0509076] [INSPIRE].
  48. [48]
    N.S. Deger, A. Kaya, H. Samtleben and E. Sezgin, Supersymmetric warped AdS in extended topologically massive supergravity, Nucl. Phys. B 884 (2014) 106 [arXiv:1311.4583] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  49. [49]
    N.S. Deger and G. Moutsopoulos, Supersymmetric solutions of N = (2, 0) topologically massive supergravity, Class. Quant. Grav. 33 (2016) 155006 [arXiv:1602.07263] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  50. [50]
    P. Karndumri and E.O. Colgáin, 3D Supergravity from wrapped D3-branes, JHEP 10 (2013) 094 [arXiv:1307.2086] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • I. Bakhmatov
    • 1
    • 2
  • N. S. Deger
    • 3
  • J. Gutowski
    • 4
  • E. Ó Colgáin
    • 1
    Email author
  • H. Yavartanoo
    • 5
  1. 1.Asia Pacific Center for Theoretical Physics, PostechPohangKorea
  2. 2.Institute of PhysicsKazan Federal UniversityKazanRussia
  3. 3.Department of MathematicsBogazici UniversityIstanbulTurkey
  4. 4.Department of MathematicsUniversity of Surrey GuildfordGuildfordU.K.
  5. 5.State Key Laboratory of Theoretical Physics, Institute of Theoretical PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations