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1 Introduction

Holographic entanglement entropy, as originally conceived by Ryu-Takayanagi [1, 2] (RT)

has been an unmitigated success. For static configurations, it recasts the problem of deter-

mining entanglement entropy in 2D CFTs [3–5] as a calculation of the area of a co-dimension

two minimal surface in an AdS3 bulk spacetime. The great appeal of this approach is that

it readily generalises to higher-dimensional CFTs and their AdS duals, as well as more

generic field theories with gravity duals. Moreover, a covariant generalisation [6] permits

one to start addressing the time-dependence of entanglement entropy. To date, various

explanations of the holographic prescription have appeared in the literature [7–12], leading

to great confidence in the relation.

In practice geometric calculations, especially in higher dimensions, are still tricky. Re-

stricted to symmetric entangling surfaces, namely balls or strips, the higher-dimensional

problem retains some of the simplicity of the 3D problem. However, for generic config-

urations, the recognised prescription involves solving second-order equations in a bid to

identify minimal surfaces. In this paper, we import calibrations [13, 14] from the mathe-

matics literature to aid the identification. Calibrations provide a mechanism to determine

minimal surfaces in curved space and received early attention in the string theory con-

text of Calabi-Yau compactifications [15–17].1 The connection to supersymmetry is not

1See also [18–24] for applications of calibrations to supersymmetric branes.
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so surprising as calibrations admit a spinorial construction [25], yet may be defined in the

absence of supersymmetry. We note that it was recently shown that RT minimal surfaces

in 3D are supersymmetric and one can deduce the surfaces without solving the geodesic

equation [27].

One catch of using calibrations is that they are only defined for Riemannian manifolds

and not pseudo-Riemannian counterparts. As a result, we must split our spacetime into

a timelike direction and a transverse spacelike hypersurface where one may define a cal-

ibrated cycle. Once this is done, the approach hinges on identifying a closed differential

form to define the calibration, which even in the presence of flux, may be replaced by a

“generalised calibration” [28, 29] that is no longer closed. This programme is easily im-

plemented in 3D, where the hypersurface is a 2D Riemann surface, which is necessarily a

Kähler manifold. This leaves two natural candidates for calibrations: the Kähler two-form,

or volume form in this case, and the holomorphic one-form, which may be used to define a

special Lagrangian (sLag) cycle. Since we are looking for a minimal curve in 3D, the latter

is the obvious candidate.

Over the past few years we have witnessed an increased interest in holographic entan-

glement entropy in the context of spacetimes that are not asymptotically AdS [30–33]. In

particular, one of the simplest departures from the norm involves warped AdS3 spacetimes

or black holes. In this context, the dual theory is sensitive to the asymptotic boundary

conditions and depending on them, the theory may be warped CFT, with a single copy

of Virasoro symmetry and a U(1) Kac-Moody algebra [34], or a more usual CFT with

two copies of the Virasoro algebra [35, 36]. In the literature, one encounters different

proposals for the holographic entanglement entropy. Previously, it has been suggested to

identify geodesics in warped AdS3 [32], while more recently, the Lewkowycz-Maldacena

procedure [10] has been tailored to the case where the dual theory is conjectured to be

a CFT [37, 38]. Regardless of the procedure, provided there is a minimal surface to be

determined, we will demonstrate that calibrations do the job.

Therefore, in this work, where we focus on 3D spacetimes, we put holographic entan-

glement entropy in both locally AdS3 and warped AdS3 spacetimes on an equal footing.

To do so, we eschew solving the geodesic equation and instead identify a spacelike hyper-

surface, which allows us to identify a sLag cycle. For massless, static and rotating BTZ

black holes, we show that the sLag calibration conditions can be directly solved to find

the required minimal surfaces. Furthermore, we demonstrate for warped AdS3 black holes,

and their dual putative CFTs, that the sLag calibration corresponds to a generalised cali-

bration, where the calibration is no longer closed, but proportional to the flux sourcing the

warping. In contrast, for warped CFTs, it is appropriate to simply consider calibrations.

Explicitly, we show the former for warped black hole solutions to a consistent truncation

of 10D supergravity [39].

One can neatly summarise our findings on holographic entanglement entropy SEE, as

SEE =
1

4G3

∫
sLag

Re(ϕ), (1.1)

where ϕ = eiχΩ is the holomorphic one-form on a spacelike hypersurface with a phase χ

that is fixed appropriately.
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The structure of this short note is as follows. In section 2 we review calibrations,

before applying this technology to BTZ black holes [40, 41] in section 3. In section 4,

we demonstrate that the minimal curves for a class of warped AdS3 black holes dual to

CFTs correspond to generalised sLag calibrations, while in section 5, we identify minimal

surfaces using calibrations, before concluding with a discussion of the utility of the method

in higher dimensions. In the appendix, we present a solution to the geodesic equation for

rotating BTZ.

2 Review of calibrations

We begin with a review of calibrations following [13] and its extension to generalised cal-

ibrations [28, 29]. We consider a Riemannian manifold M and a closed exterior p-form ϕ

with the property that

ϕ|ξ ≤ volξ, (2.1)

for all oriented tangent p-planes ξ on M. Then, any compact oriented p-dimensional

submanifold, or cycle, N of M with the property that

ϕ|N = volN , (2.2)

is guaranteed to be a volume minimising submanifold in its homology class, or put more

mathematically, vol(N ) ≤ vol(N ′) for any N ′ such that the boundaries agree ∂N = ∂N ′

and [N −N ′] = 0 in Hp(M;R). To appreciate this fact, one should simply note that

vol(N ) =

∫
N
ϕ =

∫
N ′
ϕ ≤ vol(N ′), (2.3)

where the first equality and last inequality follow from the above equations, while the

middle equality may be attributed to the closure of ϕ and the homology condition. We call

a closed p-form ϕ satisfying (2.1) a calibration and the submanifold N to be a calibrated

cycle in a calibrated manifold M.

The simplest example of a calibrated manifold one may consider is a complex manifold

with real dimension 2n and a Kähler form J and ϕ = 1
p!J

p with 1 ≤ p ≤ n. If dϕ = 0 so

thatM is Kähler, then the submanifolds (cycles) calibrated by ϕ are homologically volume

minimising and may be referred to as Kähler cycles. As we restrict ourselves to 3D with

a constant time condition, the resulting 2D Riemannian manifold must be Kähler, so the

only Kähler cycle is calibrated by the volume form.

This motivates us to consider sLag cycles, which are calibrated by the real part of the

holomorphic one-form ϕ = eiχΩ, where χ is an arbitrary phase. In general, a submanifold

N is sLag if and only if the following two conditions are satisfied [13]:

J |N = 0, (2.4)

Im(ϕ)|N = 0. (2.5)

In other words, we must ensure that the Kähler form and the imaginary part of the holo-

morphic form vanish when restricted to the sLag submanifold. Given we are working in

– 3 –



J
H
E
P
0
7
(
2
0
1
7
)
1
1
7

2D, the first condition is trivial, while the second along with the closure of the real part

of ϕ, dRe(ϕ) = 0, needs to be imposed to ensure that the submanifold or cycle is volume

minimising.

In order to define a generalised calibration [28, 29], let us introduce a potential energy

functional, or action, of the form

S =

∫
dpσ[

√
det g +A] (2.6)

where g is the induced worldspace p-metric, σi, i = 1, . . . , p denote spatial coordinates and

A is a p-form potential with field strength F = dA. Let us again consider N a submanifold

of a calibrated manifold with generalised calibration ϕ, so that (2.2) holds. Let N ′ be a

submanifold that is in the same homology class as N with ∂N = ∂N ′. Then we can apply

the same argument as above: we note that

vol(N ) =

∫
N
ϕ =

∫
N ′
ϕ+

∫
D

dϕ, (2.7)

where D is a (p+ 1)-dimensional surface with ∂D = N −N ′. Now, provided

dϕ = −F, (2.8)

then we have∫
N

dpσ[
√

det g +A] =

∫
N ′
ϕ+

∫
N ′

dpσA ≤
∫
N ′

dpσ[
√

det g +A], (2.9)

where the final inequality follows from (2.1). As a result of this argument, we conclude

that S|N ≤ S|N ′ , so that the action restricted to the submanifold N is minimised. It is

easy to see that if F = 0, then the bound for generalised calibrations reduces to the bound

for calibrated manifolds saturated by minimal surfaces.

Before leaving this section, one final important comment is in order. It is known

that (generalised) calibrations are intimately related to supersymmetry conditions that

follow from the Killing spinor equation. For example, in [23] supersymmetric M2-branes

are considered and one can define a one-form K and two-form Σ from the Killing spinor

bilinears and show that dΣ = iKG4, where G4 is the four-form flux of 11D supergravity.

In this process, one identifies Σ as a generalised calibration. With this connection in mind,

we would like to see if one can define one-form Killing spinor bilinears in AdS3 that play

the same role.

From the perspective of supersymmetry with Killing spinor ε, it is most natural to

define Killing spinor vector bilinears

Kµ = iε̄γµε = iε†Aγµε,

Ωµ = ε̄cγµε = −εTC−1γµε.
(2.10)

where in 3D with signature (−,+,+) A and C satisfy AγµA
−1 = −γ†µ and C−1γµC = −γTµ .

We observe that K is a real one-form, whereas Ω is complex, so we have precisely enough

vectors to define a 3D spacetime.
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Let us be more specific and consider massless BTZ (3.1), where the solution to the

Killing spinor equation, ∇µε = 1
2γµε, is

ε = (r
1
2 + r−

1
2xγx)ε+ + r−

1
2 ε−, γrε± = ±ε±. (2.11)

Since we are interested in constant time surfaces, we have set t to a constant, which allows

us without loss of generality to absorb it in the constant spinors ε±. In [27], it was noted

that the RT embedding (3.15) preserved half the Killing spinors provided the constant

spinors satisfied the relation,

ε− = hγxε+, (2.12)

where h is a constant. Substituting these expressions back into K and Ω, while neglecting

e0 = dt
r , since t is constant, but retaining ex = dx

r , e
r = dr

r components, it is easy to

explicitly check that both one-forms vanish on the minimal surface. The vanishing of K

is not surprising: it defines a timelike vector and evaluated on a spacelike surface, such as

the RT surface, it can be expected to be zero, since it is normal to the surface. In contrast,

the vanishing of Ω is a little puzzling, since this has precisely the right form to define a

sLag cycle.

However, it is easy to understand this from another angle to confirm that it must

vanish. Let us define the additional scalar f = ε̄ε. Using Fierz identity, one can show that

supersymmetry restricts the norms of K and Ω to satisfy:

−K2 = Re(Ω)2 = Im(Ω)2 = f2. (2.13)

As claimed earlier, it is easy to see that if f is non-zero, then K defines a timelike direction.

However, once we consider constant time surfaces, then K = 0 implies f = 0. As a result,

we are left with Ω, which is defined on a Riemannian space and has zero norm, which

implies it is also zero.

So, the take-home message is that while one can define spinor bilinears, at least in 3D

in the case of locally AdS3 solutions, these bilinears cannot correspond to calibrations for

spacelike surfaces. This appears to preclude the possibility that we can use supersymmetry

conditions derived from the Killing spinors to identify calibrations that can be applied to

calculate holographic entanglement entropy.

3 Calibrations and BTZ black holes

Having introduced calibrations, in this section we illustrate their utility in the context of the

class of locally AdS3 spacetimes corresponding to BTZ black holes [40, 41]. We emphasise

that the same results may be achieved from solving the geodesic equation, which is easy to

do in 3D since all BTZ black holes have a global U(1) × U(1) isometry that allows one to

introduce two constants of motion. Moreover, the same outcome is achieved by studying

supersymmetric curves [27], but as we remarked in the last section, it is not immediately

obvious how calibrations and supersymmetry are reconciled in the current context.

As stressed in the introduction, calibrations allow us to by-pass the second-order equa-

tions and reduce the problem immediately to solving first-order partial differential equa-

tions (PDEs). We will in turn solve the latter using the method of characteristics (see
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for example [42]). In order to help the reader digest the method, we start by considering

the simplest case of massless BTZ, before proceeding to static BTZ and non-extremal,

rotating BTZ.

3.1 Massless BTZ

We begin with the simplest example, namely massless BTZ in Poincaré patch, where the

spacetime metric is

ds2
3 =

1

r2
(−dt2 + dx2 + dr2). (3.1)

Here, it is easy to identify a spacelike hypersurface by adopting constant time. The 2D

space is then hyperbolic and one can introduce the holomorphic form

ϕ = eiχ
(

dx

r
+ i

dr

r

)
. (3.2)

Modulo an ambiguity in the phase χ, this is then our candidate sLag calibration. To

guarantee it is genuinely sLag, we must ensure that the imaginary part vanishes and the

real part is closed. This leads us to the two equations:

cosχ
dr

r
+ sinχ

dx

r
= 0, (3.3)

∂r

(
cosχ

r

)
+

1

r
∂x(sinχ) = 0. (3.4)

The philosophy now is to solve (3.4) for χ(r, x) before substituting back into (3.3).

The solution to (3.4) can be found using the method of characteristics as we summarise

now. First, let us denote cosχ = f(x, r) for convenience. The equation (3.4) is then

1

r

∂f

∂r
− f

r
√

1− f2

∂f

∂x
=

f

r2
. (3.5)

In an auxiliary three-dimensional space spanned by (r, x, f) this equation can be viewed

as a condition of orthogonality between the two vector fields. One of them can be read off

from (3.5):

V i = (V r, V x, V f ) =

(
1

r
,− f

r
√

1− f2
,
f

r2

)
, (3.6)

while the other is a field of normal vector N i to a two-dimensional surface given by the

equation f = f(r, x):

N i = (N r, Nx, Nf ) =

(
∂f

∂r
,
∂f

∂x
,−1

)
. (3.7)

Thus the equation (3.5) can be viewed as a condition that the surface f = f(r, x) is a

one-parameter family of integral curves of V i (the normal vector to the surface is orthog-

onal to V i). To find the integral curves, write down the system of ordinary differential

equations (ODEs):

ṙ = V r, ẋ = V x, ḟ = V f , (3.8)

– 6 –
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or equivalently

r dr = −r
√

1− f2

f
dx =

r2

f
df. (3.9)

It is worth noting that the first equality is simply the equation (3.3), so by solving via the

method of characteristics, the remaining calibration condition is guaranteed to hold.

As soon as we find two independent first integrals of this system

c1 = φ1(f, x, r),

c2 = φ2(f, x, r),
(3.10)

any integral curve of V i corresponds to some fixed values of c1 and c2. A one-parameter

family of integral curves, then, is given by fixing some functional dependence F (c1, c2) = 0.

Any choice of function F gives some integral surface of the vector field V i, and if one is

able to solve F (c1, c2) = 0 for f , this would give some solution f = f(r, x) to (3.5).

In particular, from (3.9) we see that

r dr =
r2

f
df, (3.11)

which immediately implies that f = c1r. Substituting for r, we can recast the remaining

equation from (3.9) as

− c1 dx =
f df√
1− f2

, (3.12)

which can be integrated to give −c1x +
√

1− f2 = c2. We remark that at this stage we

could employ the shift symmetry available in x to set c2 = 0. However, for the moment we

retain it. Thus, the two first integrals of the system (3.9) are given by

c1 =
f

r
,

c2 =
√

1− f2 − f x
r
.

(3.13)

Note, these are independent first integrals of the system of ODEs and at the same time

implicit solutions to the PDE. More generally, one could proceed by choosing various

functions F (c1, c2) = 0 to derive a generic solution f = f(x, r) to (3.5). However, let us

look at the characteristics themselves. A characteristic is an integral curve of V i, given by

intersection of the surfaces (3.13). It is easy to exclude f from these algebraic equations,

which gives a projection of an arbitrary characteristic to the (x, r) plane:(
x+

c2

c1

)2

+ r2 =
1

c2
1

. (3.14)

It is worth stressing that c1 is a constant of motion that arises from the fact that x is

an isometry direction. Relabeling it as c1 = h−1, while employing shift symmetry in x to

set c2 = 0, we arrive at the known RT minimal surface for massless BTZ,

r2 + x2 = h2. (3.15)

– 7 –
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Note, in solving the calibration conditions, we have not extracted an expression for

f , or alternatively χ. Indeed, we have identified two integral surfaces of the characteristic

vector field (3.13) and we should make sure that the Re(ϕ) agrees with ds, the differential

of length of the geodesic, on their intersection, so that we recover the usual RT prescription.

This ensures the validity of equation (1.1). For the first surface in (3.13), with c1 = h−1,

the corresponding calibration is

Re(ϕ) =
1

h

(
dx− x

r
dr

)
= ds, (3.16)

where we have used (3.15) to simplify the expression. Repeating the exercise with the

second integral surface, once again employing (3.15), this time with c2 = 0, we find the

same result. This is guaranteed to be the case since (3.14), from where we deduce (3.15),

is simply the intersection of the two surfaces given in (3.13).

3.2 Static BTZ

Having mastered the simplest case, we move onto the static BTZ black hole with spacetime

metric,

ds2
3 = −(r2 −m)dt2 + r2dx2 +

dr2

(r2 −m)
. (3.17)

We again restrict our attention to a constant time hypersurface, and to simplify expressions,

we redefine r =
√
m cosh ρ, so that the 2D hypersurface metric becomes:

ds2
2 = m cosh2 ρ dx2 + dρ2. (3.18)

We next introduce the holomorphic one-form,

ϕ = eiχ(
√
m cosh ρ dx+ idρ), (3.19)

which serves as the sLag calibration. We proceed to identify the calibration conditions.

Denoting cosχ = f(x, r) we recast the dRe(ϕ) = 0 equation in the form

√
m cosh ρ

∂f

∂ρ
− f√

1− f2

∂f

∂x
= −
√
mf sinh ρ. (3.20)

We thus need to look for two independent first integrals of the system of ODEs, which

defines the characteristics of (3.20):

dρ√
m cosh ρ

= −
√

1− f2

f
dx = − 1√

m sinh ρ

df

f
. (3.21)

We begin by solving the equation that relates dρ and df , which yields c1 = f cosh ρ.

Using this to eliminate f from the equation that relates dρ and dx, we get the Im(ϕ) = 0

condition. This again shows that the method of characteristics takes care of the other

calibration condition. On the other hand, eliminating ρ from the equation that relates dx

and df , we find
√
m dx =

f df√
(1− f2)(c2

1 − f2)
. (3.22)
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Figure 1. Surfaces (3.25) with c2 = 0,m = 1, orange and (3.26) with c1 = 1.8, blue (left); the

same surfaces viewed from above (centre); the curve (3.27) (right).

As we show in the appendix for the rotating case, if one demands that the minimal surface

makes contact with the boundary to define a spacelike separated interval, then we require

c2
1 > 1. We postpone motivating this condition further until we discuss the rotating BTZ

example in the next subsection.

In integrating (3.22), one has to exercise some care in order to find the correct char-

acteristics. Denoting y = f2, a = 1
2(c2

1 + 1), b = 1
2(c2

1 − 1), we have

2
√
m(x− c2) =

∫
dy√

(y − a)2 − b2
= −t, (3.23)

where we have used the substitution

cosh t =
a− y
b

, (3.24)

where we are assuming a − y > b > 0. Using c1 = f cosh ρ and simplifying, one can solve

for f :

f =
[
1 + sinh2 ρ tanh2(

√
mx− c2)

]−1/2
. (3.25)

Together with

f =
c1

cosh ρ
, (3.26)

we have two families of solutions to (3.20) that represent different integral surfaces of the

characteristic vector field. The families are parametrised by the values of the first integrals,

c1, c2, of the system of ODEs (3.21).

The intersection between the integral surfaces (3.25) and (3.26) for given values of c1, c2

is the characteristic of the initial PDE (3.20). By eliminating f we find the projection of

the characteristic onto the (x, ρ) plane:

tanh ρ =

√
c2

1 − 1

c2
1

cosh
√
m(x− c2) (3.27)

Now we can fix c1 = r∗/
√
m and set c2 = 0 by employing a shift in x. In terms of the

original coordinates, the curve then becomes
√
r2 −m
r

=

√
r2
∗ −m
r∗

cosh
√
mx, (3.28)

– 9 –
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where it can be confirmed from equation (4.25) of [27] that this is the expected RT minimal

surface. At this point, we should check that Re(ϕ) agrees with ds to make sure that

everything is consistent. It can be verified that the two first integrals of the system of ODEs

agree, as expected, so we simply choose f = cosχ = r∗/(
√
m cosh ρ). A straightforward

calculation then reveals that

Re(ϕ) = r∗dx−
√
r2
∗ −m√
r2 −m

sinh(
√
mx)dr = ds. (3.29)

3.3 Rotating BTZ

This brings us to our last example, namely (non-extremal) rotating BTZ:

ds2
3 = −

(r2 − r2
+)(r2 − r2

−)

r2
dt2 +

r2dr2

(r2 − r2
+)(r2 − r2

−)
+ r2

(
dx+

r+r−
r2

dt

)2

, (3.30)

where we will be brief and omit details, since they closely mirror the previous example. In

order to identify the required 2D spacelike hypersurface, we rewrite (3.30) as

ds2
3 =
−(r2 − r2

+)dX2
− + (r2 − r2

−)dX2
+

r2
+ − r2

−
+

r2dr2

(r2 − r2
+)(r2 − r2

−)
, (3.31)

where we have defined X± = r±x + r∓t. We observe that X− is a timelike direction, so

we define our spacelike surface by setting it to be a constant. By way of a side remark,

it can be checked from the analysis in the appendix that the geodesic equations can be

consistently truncated in this fashion, in line with expectations. For simplicity, we choose

X− = 0 and drop the remaining subscript. To exploit the similarity with the last example,

we switch to a new radial coordinate,√
r2 − r2

−
r2

+ − r2
−

= cosh ρ. (3.32)

As a result, the metric on the hypersurface can be simplified accordingly,

ds2
2 =

r2 − r2
−

r2
+ − r2

−
dX2 +

r2dr2

(r2 − r2
+)(r2 − r2

−)
= cosh2 ρ dX2 + dρ2. (3.33)

We observe that this is just the metric (3.18) up to replacement m→ 1, x→ X. Therefore,

the subsequent analysis carries over from the static case and we can immediately reproduce

the result (3.27) with the same replacement:√
r2 − r2

+

r2 − r2
−

=

√
c2

1 − 1

c2
1

cosh(X − c2). (3.34)

For the choice c1 = L/r+ and c2 = 0, where we have again exploited shift symmetry,

we have

coshX =
L√

L2 − r2
+

√
r2 − r2

+

r2 − r2
−
, (3.35)
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which recovers equation (4.38) of [27] upon setting X− = 0. Note that L ≡ gxµẋ
µ is a

constant of motion associated to the isometry in the original x-direction given in (3.30).

As a further consistency check, it can be noted that setting r− = 0, r+ =
√
m and L = r∗,

we recover the earlier expression for static BTZ (3.28). Finally, it can be checked that

Re(ϕ) = ds, so that (1.1) agrees with the RT prescription.

We now comment on the restriction c2
1 > 1. In the appendix we have solved the geodesic

equation for rotating BTZ metric to make sure that there is well-defined interval on the

boundary with spacelike separation. Up to an irrelevant sign, it can be seen from (A.8)

that |c1| = |L/r+| > 1, so that only when c2
1 > 1 do we find a good geodesic for the specific

purpose of calculating entanglement entropy holographically.

4 Generalised calibrations and warped AdS3

Having discussed BTZ black holes, which are a class of locally AdS3 solutions, in the last

section, here we consider one of the simplest deformations of the AdS3 geometry. We will

focus on spacelike warped AdS3 solutions, where the warping is sourced by a U(1) gauge

field. While warped AdS3 vacua arise in a host of different settings, including Topologically

Massive Gravity [43–45], the near-horizon of extremal Kerr black holes [46, 47], as well as

supersymmetric solutions to N = 2 off-shell supergravities [48, 49], here we confine our

attention to the following theory [39],

L = R vol3 − 4dU ∧ ∗3dU − 4e−4UA ∧ ∗3A
+ 2e−4U (2− e−4U )vol3 −A ∧ F,

where A is a U(1) gauge field with field strength F = dA and U denotes a scalar. This

theory can be defined as a consistent truncation of 10D supergravity [39]. Moreover, with

the inclusion of some additional fields, it can be brought to the form of a 3D N = 2 gauged

supergravity [50], once again embedded in 10D supergravity. The advantage of focusing

on this theory is that the dual theory is believed to be a 2D CFT, since one can recover

two copies of the Virasoro algebra from the asymptotic symmetry analysis [36]. For this

reason, we can view it as one of the mildest deformations of AdS3.

For constant U , the theory admits a family of warped black string solutions, which are

parametrised by left/right-moving temperatures T∓ and an arbitrary parameter λ [36]

ds2
3 = T 2

+dv2 + 2ρ du dv +
[
T 2
−e

4U − λ2ρ2
]

du2 +
e4Udρ2

4(ρ2 − T 2
+T

2
−)
,

e4U = 1 + λ2T 2
+, A = λ e−2U (T 2

+dv + ρ du).

(4.1)

One of the key observations of [36] is that for fixed U one can define an auxiliary unwarped

AdS3 metric g̃µν , which is related to the warped metric gµν :

g̃µν = e−4Ugµν +AµAν . (4.2)

Restricting our attention to the above solution, the explicit unwarped metric may be ex-

pressed as [36],

ds2
3 = T 2

+dv2 + 2ρ du dv + T 2
−du2 +

dρ2

4(ρ2 − T 2
+T

2
−)
. (4.3)

– 11 –
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Although this may look unfamiliar, it is an easy exercise to recast the above metric as

rotating BTZ (3.30) through the following redefinitions:

v =
1√
2

(−t+ x), u =
1√
2

(t+ x), ρ = r2 − 1

2
(r2

+ + r2
−), T± =

1√
2

(r+ ∓ r−). (4.4)

At this point, we import a key result from Song et al. [37]. As remarked earlier, it

is straightforward to determine holographic entanglement entropy in AdS3 as the problem

reduces to calculating the length of spacelike geodesics. While this is true in the auxil-

iary unwarped AdS3 geometry, it is not true in the warped counterpart. In fact, in the

warped geometry one must consider the trajectory of a charged particle. To illustrate the

distinction, let us consider the action

S =
1

4G3

∫
ds
[
m
√
gµν ẋµẋν + qAµẋ

µ
]
, (4.5)

where m is the mass and q is the charge. Now, provided the constants are chosen, such

that
q

m
= Aµẋ

µe4U , (4.6)

and one normalises the velocity of the particle so that gµν ẋ
µẋν = 1, then one recovers the

same equations as the geodesic equation in auxiliary AdS3 [37]. More concretely, one finds

that the equation,

ẍµ + Γµρσẋ
ρẋσ =

q

m
Fµν ẋ

ν (4.7)

which follows from the action (4.5), when evaluated on the warped solution (4.1), agrees

with the geodesic equation for auxiliary AdS3 (4.3),

¨̃xµ + Γ̃µρσ ˙̃xρ ˙̃xσ = 0. (4.8)

Therefore, the problem of finding the trajectory boils down to solving the geodesic equation

in auxiliary AdS3. Note, some care is required with the normalisation of the velocity as

gµν ẋ
µẋν = 1 implies g̃µν ˙̃xµ ˙̃xν 6= 1.

One further comment: from (4.6) it is not immediately obvious that the right hand

side is a constant. To see this, note that the only raised component of Aµ, namely Av =

λ(1 +λ2T 2
+)−

1
2∂v, is a Killing vector, so that there is a constant of motion associated to it.

This property ensures that the right hand side is a constant.

4.1 Warped geometry

In principle we could use of the method of characteristics introduced earlier to solve the

generalised calibration conditions for the warped geometry. However, we have already

extracted an expression for the sLag cycle by solving the calibration condition in the un-

warped auxiliary AdS3, which through the coordinate transformation (4.4) may be brought

to the form of rotating BTZ (3.30). This reduces the problem to the analysis presented in

section 3. For this reason, here we will simply confirm that the warped geometry satisfies

a generalised calibration condition.

– 12 –
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As before, let us consider X− = 0, X+ = X. From the perspective of the warped

geometry (4.1) it is not immediately obvious how to select the 2D hypersurface, but here

we can use the existence of the auxiliary AdS3 to guide us. With this simplification, we

can rewrite the warped AdS3 coordinates (v, u, ρ) in terms of (X, r),

v =
1√
2

X

(r+ − r−)
, u =

1√
2

X

(r+ + r−)
, ρ = r2 − 1

2
(r2

+ + r2
−), (4.9)

where now r is the radial coordinate of the BTZ metric. Following the same steps as before,

we isolate the 2D spacelike hypersurface,

ds2
2 =

(r2 − r2
−)

(r2
+ − r2

−)
∆1dX2 +

r2 ∆2

(r2 − r2
+)(r2 − r2

−)
dr2, (4.10)

where we have defined

∆1 = 1− λ2

2

(r+ − r−)

(r+ + r−)
(r2 − r2

+), ∆2 = 1 +
λ2

2
(r+ − r−)2. (4.11)

Setting λ = 0, it is easy to check that we recover the unwarped 2D hypersurface (3.33).

With this 2D metric, the candidate calibration becomes,

ϕ = eiχ

√ r2 − r2
−

r2
+ − r2

−

√
∆1dX + i

√
∆2

rdr√
(r2 − r2

+)(r2 − r2
−)

 . (4.12)

To show that this is a generalised calibration, we require that its imaginary part vanishes

and that

dRe(ϕ) = − q

m
F, (4.13)

where the constant factor is fixed by comparing the warped action (4.5) with (2.6).

We begin by determining the right hand side in terms of Ẋ,

q

m
FrX =

λ2Ẋ(r2 − r2
−)r

(r+ + r−)2
. (4.14)

where we have reverted to coordinates. At this point, we should ensure that Ẋ is correctly

normalised so that gµν ẋ
µẋν = 1 in the warped metric. To determine this, one can use (3.35)

to eliminate ṙ in terms of Ẋ, so that one can solve gµν ẋ
µẋν = 1 for Ẋ. This gives a final

expression for the field strength:

q

m
FrX = −

√
2λ2L(r+ − r−)r

(r+ + r−)
√

(L2 − r2
+)[1 + (r+ − r−)2λ2]− (L2 + r2

+)
. (4.15)

It is easy to see that one recovers, up to sign, the same expression from dRe(ϕ). To

do, so we first use the vanishing of the imaginary part of the calibration, along with (3.35)

to determine tanχ,

tanχ = −

√
∆2

√
(r2 − r2

+)(L2 + r2
+)− (r2 − 2r2

− + r2
+)(L2 − r2

+)

√
2L
√

∆1

√
r2

+ − r2
−

, (4.16)

– 13 –



J
H
E
P
0
7
(
2
0
1
7
)
1
1
7

which in turn allows us to extract expressions for cos χ and sinχ. It is worth noting

that χ only depends on the radial direction r. This means that substituting back into the

calibration (4.12), we only need to consider the derivative of the first term. Performing this

step, and simplifying accordingly, one indeed confirms that (4.13) is satisfied. This confirms

that the sLag cycle we have identified is calibrated with respect to a generalised calibration.

5 Calibrations in warped AdS3

We claim that calibrations offer a unified way to determine holographic entanglement

entropy. For completeness, in this section we will demonstrate the utility of calibrations

in identifying geodesics in warped AdS3 black holes. Similar analysis for warped AdS3

spacetimes without a horizon have appeared in [32]. It is worth noting that spacelike

geodesics in warped AdS3 have different asymptotics to unwarped AdS3: instead of a

constant interval at the boundary, we will see that the interval is infinite, a feature noted

earlier in [32].

We recall the metric (4.1), in the generic case for which T+ 6= 0 and T− 6= 0, and make

the coordinate transformation

u =
1

T−
û, v =

1

T+
v̂, ρ = T+T−r, (5.1)

and further define

µ2 = 1 + λ2(T+)2 . (5.2)

On performing the coordinate transformation, and dropping the hats, the metric simpli-

fies to

ds2
3 = −µ2(r2 − 1)du2 + (dv + r du)2 +

µ2

4(r2 − 1)
dr2 . (5.3)

To initiate our analysis, we make a change of coordinates to identify a preferred timelike

direction,

u =
1

2
(x− t), v =

1

2
(t+ x). (5.4)

In these new coordinates, the metric is expressed as

ds2
3 =

1

4

(
(1− r)2 + µ2(1− r2)

)(
dt− (r + 1)(µ2 − 1)

[(1− r) + µ2(1 + r)]
dx

)2

+ ds2
2, (5.5)

where we have defined,

ds2
2 =

µ2(1 + r)

1 + µ2 + r(µ2 − 1)
dx2 +

µ2

4(r2 − 1)
dr2. (5.6)

We note that there is a horizon at r = 1, so our task is to identify a minimal surface that

makes contact with the boundary (large r), but does not penetrate the horizon.

Following the procedure outlined for BTZ black holes in section 3, our next step is to set

the timelike direction to zero. Here, the identification of an appropriate timelike direction

has been guided by a study of the constants of motion. It is an interesting feature of our

– 14 –
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choice that both the constants of motion become equal and the change of the t-direction

along the resulting curve is independent of the radial direction,

ṫ =
α

µ2
(µ2 − 1), (5.7)

where α is the constant of motion. Again, we draw the attention of the reader to the

simplification that results in the unwarped case, µ = 1, where the curve is independent of t.

We can now introduce the calibration. In terms of the frame,

e1 =
µ
√
r + 1√

1 + µ2 + r(µ2 − 1)
dx, e2 =

µ

2
√
r2 − 1

dr , (5.8)

it can be written as,

ϕ = eiχ(e1 + ie2). (5.9)

From Im(ϕ) = 0, we get the condition,

dr

dx
= −2 tanχ

√
r + 1

√
r2 − 1√

1 + µ2 + r(µ2 − 1)
. (5.10)

In order to determine the second calibration condition, we note the expression for Re(ϕ),

Re(ϕ) =
µ
√
r + 1 cosχ√

1 + µ2 + r(µ2 − 1)
dx− µ sinχ

2
√
r2 − 1

dr. (5.11)

In principle, one can now use the method of characteristics to solve the PDE that results

from the closure of this one-form. Instead, we will employ a short-cut. Based on earlier

analysis, it is clear that an angle χ can be found that only depends on the radial direction.

This assumption, along with dRe(ϕ) = 0, leads immediately to

cosχ =
α

µ

√
1 + µ2 + r(µ2 − 1)√

r + 1
, (5.12)

where we have fixed the overall constant. Substituting this result back into (5.10), we

encounter the differential equation:

dx

dr
= ± α(1 + µ2 + r(µ2 − 1))

2
√
α2(r − 1)− µ2(α2 − 1)(r + 1)

√
r + 1

√
r2 − 1

, (5.13)

where, assuming α > 0, we have allowed for x to increase/decrease with r, and care must be

taken to ensure that various quantities in square roots are positive: for example, we require,

∆ ≡ µ2 + α2 − α2µ2 > 0. (5.14)

Modulo the sign, a solution to the differential equation (5.13) can be found:

x = ±

(
α√
∆

(µ2 − 1) tanh−1

[√
(r − 1)α2 − µ2(α2 − 1)(r + 1)√

∆
√
r − 1

]

+ tanh−1

[√
(r − 1)α2 − µ2(α2 − 1)(r + 1)

α
√
r − 1

])
. (5.15)
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In summary, we have identified the appropriate minimal surface by imposing a calibration

condition and it is a straightforward exercise to see that the result corresponds to a solution

to the geodesic equation. We have checked that a range of parameters can be found with

α > 1 where the minimal surface makes contact with the boundary at two points but does

not cross the horizon.

6 Discussion

In this note we have taken initial steps in applying calibrations to the problem of determin-

ing holographic entanglement entropy. This approach may be hoped to reap some benefit

in higher dimensions, where the task of identifying minimal surfaces intrinsic to the RT

prescription involves solving tricky second-order equations. Here, the rational for using cal-

ibrations is that the second-order equations are immediately reduced to first-order PDEs.

Furthermore, calibrations provide a more elegant coordinate-free description. Within the

scope of this work, we have confined ourselves to calculations in 3D gravity, where the

calibration conditions are expected to be equivalent to the geodesic equation.

For BTZ black holes, we showed that the minimal curves correspond to sLag cycles,

which are calibrated by the real part of a holomorphic one-form on a 2D spacelike hyper-

surface. This allowed us to immediately write down first-order PDEs, which we in turn

solved using the method of characteristics. We noted that in the presence of flux, where the

spacetime becomes warped AdS3 the sLag cycle is specified by a generalised calibration,

whose exterior derivative is proportional to the flux warping the geometry. Moreover, we

showed that calibrations may be employed to identify geodesics in warped AdS3. Thus,

calibrations provide a unified approach to determine holographic entanglement entropy in

both locally AdS3 and warped AdS3 spacetimes. For warped AdS3 spacetimes that pre-

serve some supersymmetry, it should be possible to identify a projection condition that

specifies the required minimal surfaces, thereby generalising the analysis of [27] beyond

locally AdS3 spacetimes.

We end with some discussion of the applications to higher-dimensional AdSp+2 space-

times. From the outset, one necessary comment is that the sLag cycle does not generalise

in a naive way. To see this, note that in 5D, where p = 3, the spacelike hypersurface is 4D,

implying that the natural sLag cycle is a 2D submanifold. Instead, the RT prescription

requires a co-dimension two surface in 5D, or a 3D submanifold, so it is clear that sLag

cycles are just unique to 3D.

Regardless, let us consider AdSp+2 spacetime with symmetric entangling surfaces cor-

responding to infinite strips or disks on the boundary. In both cases, it is possible to follow

one’s nose and identify p-forms analogous to the sLag calibration we identified in 3D. These

forms may be expressed as

ϕstrip = eiχ
1

rp−1

(
dx1

r
+ i

dr

r

)
∧ dx2 ∧ · · · ∧ dxp, (6.1)

and

ϕdisk = eiχ
(η
r

)p−1
(

dη

r
+ i

dr

r

)
∧ vol(Sp−1), (6.2)
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respectively, where once again χ is a phase to be determined. In the first case, we have

parametrised the metric on Rp as ds2(Rp) = dx2
1 + · · · + dx2

p, allowing only x1 to be a

function of the radial direction r, whereas in the disk case, ds2(Rp) = dη2 + η2ds2(Sp−1),

where only η depends on r. Owing to the high degree of symmetry, the problem is reduced

to the simplicity of 3D. In fact, the above calibrations are sLag cycles in 3D, but not in

higher dimensions, since the Kähler form contracted into ϕ is not zero. However, it is

plausible that one can consider the forms to be genuine sLag calibrations in some higher

dimensional space by adding extra spectator coordinates that play no role in the analysis.

In order to demonstrate that the above forms are indeed calibrations, it is enough to

show that the conditions dRe(ϕ) = Im(ϕ) = 0 recover the minimal surfaces identified by

Ryu-Takayanagi in higher dimensions [2]. For concreteness let us illustrate the case of the

disk (6.2). Imposing the calibration conditions, we find two equations:

0 = sinχdη + cosχdr,

0 = ∂r

(
cosχ

ηp−1

rp

)
+ ∂η

(
sinχ

ηp−1

rp

)
. (6.3)

It is easy to confirm that the higher-dimensional RT minimal surface [2]

r2 + η2 = h2, (6.4)

where h is a constant, is a solution to the above equations. More concretely, one can

explicitly write,

cosχ =
r√

r2 + η2
, sinχ =

η√
r2 + η2

. (6.5)

This we interpret as a positive sign that we have identified a valid calibration. It remains to

be seen if this is the only solution. The analysis for the strip is similar and one recovers the

expected result [2]. We postpone a more in-depth analysis of higher-dimensional examples

to future work.
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A Geodesics in rotating BTZ

Here we solve the geodesic equation for rotating BTZ. It allows us to verify that there

is a well-defined boundary interval with spacelike separation, a task that was not fully

completed in [26, 27] (but see also [32]).
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As explained in the body of the text, the non-extremal, rotating BTZ metric may be

rewritten as (3.31). In these coordinates, the geodesic equation becomes

0 = Ẍ− +
2r

r2 − r2
+

Ẋ−ṙ,

0 = Ẍ+ +
2r

r2 − r2
−
Ẋ+ṙ,

0 = r̈ +
(r2 − r2

+)(r2 − r2
−)

r(r2
+ − r2

−)
Ẋ2
− −

(r2 − r2
+)(r2 − r2

−)

r(r2
+ − r2

−)
Ẋ2

+ −
(r4 − r2

+r
2
−)ṙ2

r(r2 − r2
+)(r2 − r2

−)
.

(A.1)

It is clear from the above equations that it is consistent to truncate so that X− = 0, but we

postpone this step until after we have found the general geodesic. To solve the equations,

we employ the usual strategy. First, since X∓ are isometry directions, we can integrate

the first two equations to identify two constants of motion.2 Secondly, we can replace the

final equation with the requirement that the geodesic be spacelike,

−
(r2 − r2

+)

(r2
+ − r2

−)
Ẋ2
− +

(r2 − r2
−)

r2
+ − r2

−
Ẋ2

+ +
r2 ṙ2

(r2 − r2
+)(r2 − r2

−)
= 1. (A.2)

Finally, we replace Ẋ∓ with their conserved quantities and integrate to solve for r in

terms of the affine parameter. Suppressing further details, we merely quote the result: the

solution to the geodesic equation is

r =
1

2

√
γ cosh 2s+ α, X± =

1

2
log

(
e2s + e∆±

e2s + e−∆±

)
+ x

(2)
± , (A.3)

where ∆± = x
(1)
± − x

(2)
± and we have further defined,

γ =
8(r2

+ − r2
−)e∆++∆−

(e∆+ − e∆−)(e∆++∆− − 1)
, α =

4r2
+e

∆−(1 + e2∆+)− 4r2
−e

∆+(1 + e2∆−)

(e∆+ − e∆−)(e∆++∆− − 1)
. (A.4)

For simplicity, we now set X− = 0 through the choice x
(1)
− = x

(2)
− = 0. Dropping

subscripts, the simplified solution then reads:

r =
1

2

√
γ cosh 2s+ α, X =

1

2
log

(
e2s + e∆

e2s + e−∆

)
+ x(2),

γ =
2(r2

+ − r2
−)

sinh2(∆
2 )

, α =
2(r2

+ cosh ∆− r2
−)

sinh2(∆
2 )

.

(A.5)

Note, as s → ±∞, X → x(2) and X → x(1), respectively, thus ensuring that our geodesic

makes contact with the boundary at two points. This ensures the geodesic is valid from

the perspective of holographic entanglement entropy.

Since X and r are functions of the affine parameter s, we can eliminate it to write X

directly in terms of r as

cosh

(
X − 1

2
(x(1) + x(2))

)
= cosh

∆

2

√
r2 − r2

+

r2 − r2
−
. (A.6)

2See for example appendix B of [27].
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By shifting X by a constant X → X + 1
2(x(1) + x(2)) the above equation may be simply

written as

coshX = cosh
∆

2

√
r2 − r2

+

r2 − r2
−
. (A.7)

As a consistency check on the result, we note that one can recover equation (B.7)

of [27] with X− = 0, provided the independent constant there, namely L, is related to ∆

in the following way,

L = −r+
(e∆ + 1)

(e∆ − 1)
⇒ L√

L2 − r2
+

= cosh
∆

2
, (A.8)

This shows the result is consistent with earlier analysis.
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[9] T. Faulkner, The entanglement Rényi entropies of disjoint intervals in AdS/CFT,

arXiv:1303.7221 [INSPIRE].

[10] A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090

[arXiv:1304.4926] [INSPIRE].

[11] X. Dong, A. Lewkowycz and M. Rangamani, Deriving covariant holographic entanglement,

JHEP 11 (2016) 028 [arXiv:1607.07506] [INSPIRE].

[12] M.M. Sheikh-Jabbari and H. Yavartanoo, Excitation entanglement entropy in two

dimensional conformal field theories, Phys. Rev. D 94 (2016) 126006 [arXiv:1605.00341]

[INSPIRE].

– 19 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevLett.96.181602
https://arxiv.org/abs/hep-th/0603001
https://inspirehep.net/search?p=find+EPRINT+hep-th/0603001
https://doi.org/10.1088/1126-6708/2006/08/045
https://doi.org/10.1088/1126-6708/2006/08/045
https://arxiv.org/abs/hep-th/0605073
https://inspirehep.net/search?p=find+EPRINT+hep-th/0605073
https://doi.org/10.1016/0550-3213(94)90402-2
https://arxiv.org/abs/hep-th/9403108
https://inspirehep.net/search?p=find+EPRINT+hep-th/9403108
https://doi.org/10.1088/1742-5468/2004/06/P06002
https://doi.org/10.1088/1742-5468/2004/06/P06002
https://arxiv.org/abs/hep-th/0405152
https://inspirehep.net/search?p=find+EPRINT+hep-th/0405152
https://doi.org/10.1088/1751-8113/42/50/504005
https://doi.org/10.1088/1751-8113/42/50/504005
https://arxiv.org/abs/0905.4013
https://inspirehep.net/search?p=find+EPRINT+arXiv:0905.4013
https://doi.org/10.1088/1126-6708/2007/07/062
https://arxiv.org/abs/0705.0016
https://inspirehep.net/search?p=find+EPRINT+arXiv:0705.0016
https://doi.org/10.1007/JHEP05(2011)036
https://arxiv.org/abs/1102.0440
https://inspirehep.net/search?p=find+EPRINT+arXiv:1102.0440
https://arxiv.org/abs/1303.6955
https://inspirehep.net/search?p=find+EPRINT+arXiv:1303.6955
https://arxiv.org/abs/1303.7221
https://inspirehep.net/search?p=find+EPRINT+arXiv:1303.7221
https://doi.org/10.1007/JHEP08(2013)090
https://arxiv.org/abs/1304.4926
https://inspirehep.net/search?p=find+EPRINT+arXiv:1304.4926
https://doi.org/10.1007/JHEP11(2016)028
https://arxiv.org/abs/1607.07506
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.07506
https://arxiv.org/abs/1605.00341
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.00341


J
H
E
P
0
7
(
2
0
1
7
)
1
1
7

[13] R. Harvey and Jr. H.B. Lawson, Calibrated geometries, Acta Math. 148 (1982) 47.

[14] F.R. Harvey, Spinors and calibrations, Academic Press, U.S.A. (1990).

[15] K. Becker, M. Becker and A. Strominger, Five-branes, membranes and nonperturbative string

theory, Nucl. Phys. B 456 (1995) 130 [hep-th/9507158] [INSPIRE].

[16] K. Becker, M. Becker, D.R. Morrison, H. Ooguri, Y. Oz and Z. Yin, Supersymmetric cycles

in exceptional holonomy manifolds and Calabi-Yau 4 folds, Nucl. Phys. B 480 (1996) 225

[hep-th/9608116] [INSPIRE].

[17] G.W. Gibbons and G. Papadopoulos, Calibrations and intersecting branes, Commun. Math.

Phys. 202 (1999) 593 [hep-th/9803163] [INSPIRE].

[18] J.P. Gauntlett, N.D. Lambert and P.C. West, Branes and calibrated geometries, Commun.

Math. Phys. 202 (1999) 571 [hep-th/9803216] [INSPIRE].

[19] J.P. Gauntlett, D. Martelli and D. Waldram, Superstrings with intrinsic torsion, Phys. Rev.

D 69 (2004) 086002 [hep-th/0302158] [INSPIRE].

[20] D. Martelli and J. Sparks, G structures, fluxes and calibrations in M-theory, Phys. Rev. D

68 (2003) 085014 [hep-th/0306225] [INSPIRE].

[21] E.J. Hackett-Jones and D.J. Smith, Type IIB Killing spinors and calibrations, JHEP 11

(2004) 029 [hep-th/0405098] [INSPIRE].

[22] L. Martucci and P. Smyth, Supersymmetric D-branes and calibrations on general N = 1

backgrounds, JHEP 11 (2005) 048 [hep-th/0507099] [INSPIRE].

[23] J.P. Gauntlett, E. O Colgain and O. Varela, Properties of some conformal field theories with

M-theory duals, JHEP 02 (2007) 049 [hep-th/0611219] [INSPIRE].

[24] O. de Felice and J. Geipel, Generalised Calibrations in AdS backgrounds from Exceptional

Sasaki-Einstein Structures, arXiv:1704.05949 [INSPIRE].

[25] J. Dadok and R. Harvey, Calibrations and spinors, Acta Math. 170 (1993) 83.

[26] M.M. Sheikh-Jabbari and H. Yavartanoo, On 3d bulk geometry of Virasoro coadjoint orbits:

orbit invariant charges and Virasoro hair on locally AdS3 geometries, Eur. Phys. J. C 76

(2016) 493 [arXiv:1603.05272] [INSPIRE].
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[40] M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time,

Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].
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