Light baryons below and above the deconfinement transition: medium effects and parity doubling

Abstract

We study what happens to the N , Δ and Ω baryons in the hadronic gas and the quark-gluon plasma, with particular interest in parity doubling and its emergence as the plasma is heated. This is done using simulations of lattice QCD, employing the FASTSUM anisotropic N f = 2 + 1 ensembles, with four temperatures below and four above the deconfinement transition temperature. Below T c we find that the positive-parity groundstate masses are largely temperature independent, whereas the negative-parity ones are reduced considerably as the temperature increases. This may be of interest for heavy-ion phenomenology. Close to the transition, the masses are nearly degenerate, in line with the expectation from chiral symmetry restoration. Above T c we find a clear signal of parity doubling in all three channels, with the effect of the heavier s quark visible.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    P. Braun-Munzinger, V. Koch, T. Schäfer and J. Stachel, Properties of hot and dense matter from relativistic heavy ion collisions, Phys. Rept. 621 (2016) 76 [arXiv:1510.00442] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. [2]

    N. Armesto and E. Scomparin, Heavy-ion collisions at the Large Hadron Collider: a review of the results from Run 1, Eur. Phys. J. Plus 131 (2016) 52 [arXiv:1511.02151] [INSPIRE].

    Article  Google Scholar 

  3. [3]

    CMS collaboration, Observation of sequential Y suppression in PbPb collisions, Phys. Rev. Lett. 109 (2012) 222301 [arXiv:1208.2826] [INSPIRE].

  4. [4]

    ALICE collaboration, Suppression of Y(1S) at forward rapidity in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=2.76 \) TeV, Phys. Lett. B 738 (2014) 361 [arXiv:1405.4493] [INSPIRE].

  5. [5]

    PHENIX collaboration, A. Adare et al., Measurement of Y(1S + 2S + 3S) production in p+p and Au+Au collisions at \( \sqrt{s_{N\;N}}=200 \) GeV, Phys. Rev. C 91 (2015) 024913 [arXiv:1404.2246] [INSPIRE].

  6. [6]

    A. Andronic et al., Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions, Eur. Phys. J. C 76 (2016) 107 [arXiv:1506.03981] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    G. Aarts et al., Heavy-flavor production and medium properties in high-energy nuclear collisions — What next?, Eur. Phys. J. A 53 (2017) 93 [arXiv:1612.08032] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    R. Rapp and J. Wambach, Chiral symmetry restoration and dileptons in relativistic heavy ion collisions, Adv. Nucl. Phys. 25 (2000) 1 [hep-ph/9909229] [INSPIRE].

  9. [9]

    M. Cheng et al., Meson screening masses from lattice QCD with two light and the strange quark, Eur. Phys. J. C 71 (2011) 1564 [arXiv:1010.1216] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    B.B. Brandt, A. Francis, M. Laine and H.B. Meyer, A relation between screening masses and real-time rates, JHEP 05 (2014) 117 [arXiv:1404.2404] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    B.B. Brandt, A. Francis, H.B. Meyer and D. Robaina, Chiral dynamics in the low-temperature phase of QCD, Phys. Rev. D 90 (2014) 054509 [arXiv:1406.5602] [INSPIRE].

    ADS  Google Scholar 

  12. [12]

    B.B. Brandt, A. Francis, H.B. Meyer and D. Robaina, Pion quasiparticle in the low-temperature phase of QCD, Phys. Rev. D 92 (2015) 094510 [arXiv:1506.05732] [INSPIRE].

    ADS  Google Scholar 

  13. [13]

    G. Aarts, C. Allton, J. Foley, S. Hands and S. Kim, Spectral functions at small energies and the electrical conductivity in hot, quenched lattice QCD, Phys. Rev. Lett. 99 (2007) 022002 [hep-lat/0703008] [INSPIRE].

  14. [14]

    H.T. Ding, A. Francis, O. Kaczmarek, F. Karsch, E. Laermann and W. Soeldner, Thermal dilepton rate and electrical conductivity: an analysis of vector current correlation functions in quenched lattice QCD, Phys. Rev. D 83 (2011) 034504 [arXiv:1012.4963] [INSPIRE].

    ADS  Google Scholar 

  15. [15]

    A. Amato, G. Aarts, C. Allton, P. Giudice, S. Hands and J.-I. Skullerud, Electrical conductivity of the quark-gluon plasma across the deconfinement transition, Phys. Rev. Lett. 111 (2013) 172001 [arXiv:1307.6763] [INSPIRE].

  16. [16]

    G. Aarts, C. Allton, A. Amato, P. Giudice, S. Hands and J.-I. Skullerud, Electrical conductivity and charge diffusion in thermal QCD from the lattice, JHEP 02 (2015) 186 [arXiv:1412.6411] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  17. [17]

    B.B. Brandt, A. Francis, B. Jäger and H.B. Meyer, Charge transport and vector meson dissociation across the thermal phase transition in lattice QCD with two light quark flavors, Phys. Rev. D 93 (2016) 054510 [arXiv:1512.07249] [INSPIRE].

    ADS  Google Scholar 

  18. [18]

    H.-T. Ding, O. Kaczmarek and F. Meyer, Thermal dilepton rates and electrical conductivity of the QGP from the lattice, Phys. Rev. D 94 (2016) 034504 [arXiv:1604.06712] [INSPIRE].

    ADS  Google Scholar 

  19. [19]

    T. Umeda, K. Nomura and H. Matsufuru, Charmonium at finite temperature in quenched lattice QCD, Eur. Phys. J. C 39S1 (2005) 9 [hep-lat/0211003] [INSPIRE].

  20. [20]

    M. Asakawa and T. Hatsuda, J/ψ and η c in the deconfined plasma from lattice QCD, Phys. Rev. Lett. 92 (2004) 012001 [hep-lat/0308034] [INSPIRE].

  21. [21]

    S. Datta, F. Karsch, P. Petreczky and I. Wetzorke, Behavior of charmonium systems after deconfinement, Phys. Rev. D 69 (2004) 094507 [hep-lat/0312037] [INSPIRE].

  22. [22]

    G. Aarts, C. Allton, M.B. Oktay, M. Peardon and J.-I. Skullerud, Charmonium at high temperature in two-flavor QCD, Phys. Rev. D 76 (2007) 094513 [arXiv:0705.2198] [INSPIRE].

    ADS  Google Scholar 

  23. [23]

    WHOT-QCD collaboration, H. Ohno et al., Charmonium spectral functions with the variational method in zero and finite temperature lattice QCD, Phys. Rev. D 84 (2011) 094504 [arXiv:1104.3384] [INSPIRE].

  24. [24]

    S. Borsányi et al., Charmonium spectral functions from 2 + 1 flavour lattice QCD, JHEP 04 (2014) 132 [arXiv:1401.5940] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    G. Aarts et al., What happens to the Y and η b in the quark-gluon plasma? Bottomonium spectral functions from lattice QCD, JHEP 11 (2011) 103 [arXiv:1109.4496] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  26. [26]

    G. Aarts, C. Allton, S. Kim, M.P. Lombardo, S.M. Ryan and J.I. Skullerud, Melting of P wave bottomonium states in the quark-gluon plasma from lattice NRQCD, JHEP 12 (2013) 064 [arXiv:1310.5467] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    G. Aarts et al., The bottomonium spectrum at finite temperature from N f = 2 + 1 lattice QCD, JHEP 07 (2014) 097 [arXiv:1402.6210] [INSPIRE].

    ADS  Article  Google Scholar 

  28. [28]

    S. Kim, P. Petreczky and A. Rothkopf, Lattice NRQCD study of S- and P-wave bottomonium states in a thermal medium with N f = 2 + 1 light flavors, Phys. Rev. D 91 (2015) 054511 [arXiv:1409.3630] [INSPIRE].

    ADS  Google Scholar 

  29. [29]

    C.E. Detar and J.B. Kogut, Measuring the hadronic spectrum of the quark plasma, Phys. Rev. D 36 (1987) 2828 [INSPIRE].

    ADS  Google Scholar 

  30. [30]

    C.E. Detar and J.B. Kogut, The hadronic spectrum of the quark plasma, Phys. Rev. Lett. 59 (1987) 399 [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    QCD-TARO collaboration, I. Pushkina et al., Properties of hadron screening masses at finite baryonic density, Phys. Lett. B 609 (2005) 265 [hep-lat/0410017] [INSPIRE].

  32. [32]

    S. Datta, S. Gupta, M. Padmanath, J. Maiti and N. Mathur, Nucleons near the QCD deconfinement transition, JHEP 02 (2013) 145 [arXiv:1212.2927] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    G. Aarts, C. Allton, S. Hands, B. Jäger, C. Praki and J.-I. Skullerud, Nucleons and parity doubling across the deconfinement transition, Phys. Rev. D 92 (2015) 014503 [arXiv:1502.03603] [INSPIRE].

    ADS  Google Scholar 

  34. [34]

    C. Allton et al., Probing parity doubling in nucleons at high temperature, PoS(LATTICE 2015)183 [arXiv:1510.04040] [INSPIRE].

  35. [35]

    G. Aarts et al., Parity doubling of nucleons, Δ and Ω baryons across the deconfinement phase transition, EPJ Web Conf. 137 (2017) 07004 [arXiv:1611.02009] [INSPIRE].

    Article  Google Scholar 

  36. [36]

    G. Aarts et al., Parity doubling of nucleons and Delta baryons across the deconfinement phase transition, PoS(LATTICE 2016)037 [arXiv:1610.07439] [INSPIRE].

  37. [37]

    M.L. Bellac, Thermal field theory, Cambridge University Press, Cambridge U.K. (2011).

    Google Scholar 

  38. [38]

    C. Gattringer and C.B. Lang, Quantum chromodynamics on the lattice, Lect. Notes Phys. 788 (2010) 1.

    ADS  MathSciNet  Article  Google Scholar 

  39. [39]

    D.B. Leinweber, W. Melnitchouk, D.G. Richards, A.G. Williams and J.M. Zanotti, Baryon spectroscopy in lattice QCD, Lect. Notes Phys. 663 (2005) 71 [nucl-th/0406032] [INSPIRE].

  40. [40]

    SciDAC, LHPC, UKQCD collaboration, R.G. Edwards and B. Joo, The Chroma software system for lattice QCD, Nucl. Phys. Proc. Suppl. 140 (2005) 832 [hep-lat/0409003] [INSPIRE].

  41. [41]

    G. Aarts and J.M. Martinez Resco, Transport coefficients, spectral functions and the lattice, JHEP 04 (2002) 053 [hep-ph/0203177] [INSPIRE].

  42. [42]

    C. Praki and G. Aarts, Calculation of free baryon spectral densities at finite temperature, PoS(LATTICE 2015)182 [arXiv:1510.04069] [INSPIRE].

  43. [43]

    C. Praki et al., in preparation.

  44. [44]

    F. Karsch, E. Laermann, P. Petreczky and S. Stickan, Infinite temperature limit of meson spectral functions calculated on the lattice, Phys. Rev. D 68 (2003) 014504 [hep-lat/0303017] [INSPIRE].

  45. [45]

    G. Aarts and J.M. Martinez Resco, Continuum and lattice meson spectral functions at nonzero momentum and high temperature, Nucl. Phys. B 726 (2005) 93 [hep-lat/0507004] [INSPIRE].

  46. [46]

    F. Karsch and M. Kitazawa, Quark propagator at finite temperature and finite momentum in quenched lattice QCD, Phys. Rev. D 80 (2009) 056001 [arXiv:0906.3941] [INSPIRE].

    ADS  Google Scholar 

  47. [47]

    R.G. Edwards, B. Joo and H.-W. Lin, Tuning for three-flavors of anisotropic clover fermions with stout-link smearing, Phys. Rev. D 78 (2008) 054501 [arXiv:0803.3960] [INSPIRE].

    ADS  Google Scholar 

  48. [48]

    Hadron Spectrum collaboration, H.-W. Lin et al., First results from 2 + 1 dynamical quark flavors on an anisotropic lattice: light-hadron spectroscopy and setting the strange-quark mass, Phys. Rev. D 79 (2009) 034502 [arXiv:0810.3588] [INSPIRE].

  49. [49]

    C. McClendon, Optimized lattice QCD kernels for a Pentium 4 cluster (2003).

  50. [50]

    S. Gusken, U. Low, K.H. Mutter, R. Sommer, A. Patel and K. Schilling, Nonsinglet axial vector couplings of the baryon octet in lattice QCD, Phys. Lett. B 227 (1989) 266 [INSPIRE].

    ADS  Article  Google Scholar 

  51. [51]

    APE collaboration, M. Albanese et al., Glueball masses and string tension in lattice QCD, Phys. Lett. B 192 (1987) 163 [INSPIRE].

  52. [52]

    Particle Data Group collaboration, W.M. Yao et al., Review of particle physics, J. Phys. G 33 (2006) 1 [INSPIRE].

  53. [53]

    S. Dürr et al., Ab-initio determination of light hadron masses, Science 322 (2008) 1224 [arXiv:0906.3599] [INSPIRE].

    ADS  Article  Google Scholar 

  54. [54]

    Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].

  55. [55]

    Hadron Spectrum collaboration, R.G. Edwards et al., Flavor structure of the excited baryon spectra from lattice QCD, Phys. Rev. D 87 (2013) 054506 [arXiv:1212.5236] [INSPIRE].

  56. [56]

    M. Asakawa, T. Hatsuda and Y. Nakahara, Maximum entropy analysis of the spectral functions in lattice QCD, Prog. Part. Nucl. Phys. 46 (2001) 459 [hep-lat/0011040] [INSPIRE].

  57. [57]

    R. Bryan, Maximum entropy analysis of oversampled data problems, Eur. Biophys. J. 18 (1990) 165.

    Article  Google Scholar 

  58. [58]

    C.E. Detar and T. Kunihiro, Linear σ model with parity doubling, Phys. Rev. D 39 (1989) 2805 [INSPIRE].

    ADS  Google Scholar 

  59. [59]

    Y. Nemoto, D. Jido, M. Oka and A. Hosaka, Decays of 1/2-baryons in chiral effective theory, Phys. Rev. D 57 (1998) 4124 [hep-ph/9710445] [INSPIRE].

  60. [60]

    D. Jido, Y. Nemoto, M. Oka and A. Hosaka, Chiral symmetry for positive and negative parity nucleons, Nucl. Phys. A 671 (2000) 471 [hep-ph/9805306] [INSPIRE].

  61. [61]

    D. Zschiesche, L. Tolos, J. Schaffner-Bielich and R.D. Pisarski, Cold, dense nuclear matter in a SU(2) parity doublet model, Phys. Rev. C 75 (2007) 055202 [nucl-th/0608044] [INSPIRE].

  62. [62]

    J. Steinheimer, S. Schramm and H. Stocker, The hadronic SU(3) parity doublet model for dense matter, its extension to quarks and the strange equation of state, Phys. Rev. C 84 (2011) 045208 [arXiv:1108.2596] [INSPIRE].

    ADS  Google Scholar 

  63. [63]

    S. Benic, I. Mishustin and C. Sasaki, Effective model for the QCD phase transitions at finite baryon density, Phys. Rev. D 91 (2015) 125034 [arXiv:1502.05969] [INSPIRE].

    ADS  Google Scholar 

  64. [64]

    Y. Motohiro, Y. Kim and M. Harada, Asymmetric nuclear matter in a parity doublet model with hidden local symmetry, Phys. Rev. C 92 (2015) 025201 [arXiv:1505.00988] [INSPIRE].

    ADS  Google Scholar 

  65. [65]

    H. Nishihara and M. Harada, Extended Goldberger-Treiman relation in a three-flavor parity doublet model, Phys. Rev. D 92 (2015) 054022 [arXiv:1506.07956] [INSPIRE].

    ADS  Google Scholar 

  66. [66]

    P.M. Hohler and R. Rapp, Massive Yang-Mills for vector and axial-vector spectral functions at finite temperature, Annals Phys. 368 (2016) 70 [arXiv:1510.00454] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  67. [67]

    T. Harris, H.B. Meyer and D. Robaina, A variational method for spectral functions, PoS(LATTICE 2016)339 [arXiv:1611.02499] [INSPIRE].

  68. [68]

    J. Stachel, A. Andronic, P. Braun-Munzinger and K. Redlich, Confronting LHC data with the statistical hadronization model, J. Phys. Conf. Ser. 509 (2014) 012019 [arXiv:1311.4662] [INSPIRE].

    Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gert Aarts.

Additional information

ArXiv ePrint: 1703.09246

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aarts, G., Allton, C., De Boni, D. et al. Light baryons below and above the deconfinement transition: medium effects and parity doubling. J. High Energ. Phys. 2017, 34 (2017). https://doi.org/10.1007/JHEP06(2017)034

Download citation

Keywords

  • Lattice Quantum Field Theory
  • Phase Diagram of QCD
  • Quark-Gluon Plasma
  • Thermal Field Theory