Advertisement

Extended Riemannian geometry III: global Double Field Theory with nilmanifolds

  • Andreas DeserEmail author
  • Christian Sämann
Open Access
Regular Article - Theoretical Physics
  • 43 Downloads

Abstract

We describe the global geometry, symmetries and tensors for Double Field Theory over pairs of nilmanifolds with fluxes or gerbes. This is achieved by a rather straightforward application of a formalism we developed previously. This formalism constructs the analogue of a Courant algebroid over the correspondence space of a T-duality, using the language of graded manifolds, derived brackets and we use the description of nilmanifolds in terms of periodicity conditions rather than local patches. The strong section condition arises purely algebraically, and we show that for a particularly symmetric solution of this condition, we recover the Courant algebroids of both nilmanifolds with fluxes. We also discuss the finite, global symmetries of general local Double Field Theory and explain how this specializes to the case of T-duality between nilmanifolds.

Keywords

Differential and Algebraic Geometry Flux compactifications String Duality 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    G. Aldazabal, D. Marques and C. Núñez, Double field theory: A pedagogical review, Class. Quant. Grav. 30 (2013) 163001 [arXiv:1305.1907] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    D.S. Berman and D.C. Thompson, Duality symmetric string and M-theory, Phys. Rept. 566 (2014) 1 [arXiv:1306.2643] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    O. Hohm, D. Lüst and B. Zwiebach, The spacetime of double field theory: Review, remarks and outlook, Fortsch. Phys. 61 (2013) 926 [arXiv:1309.2977] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    M. Cederwall, The geometry behind double geometry, JHEP 09 (2014) 070 [arXiv:1402.2513] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    M. Cederwall, T-duality and non-geometric solutions from double geometry, Fortsch. Phys. 62 (2014) 942 [arXiv:1409.4463] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    R. Blumenhagen, F. Hassler and D. Lüst, Double field theory on group manifolds, JHEP 02 (2015) 001 [arXiv:1410.6374] [INSPIRE].
  7. [7]
    R. Blumenhagen, P. du Bosque, F. Hassler and D. Lüst, Generalized metric formulation of double field theory on group manifolds, JHEP 08 (2015) 056 [arXiv:1502.02428] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    F. Hassler, The topology of Double Field Theory, JHEP 04 (2018) 128 [arXiv:1611.07978] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    L. Freidel, F.J. Rudolph and D. Svoboda, Generalised kinematics for double field theory, JHEP 11 (2017) 175 [arXiv:1706.07089] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    A. Deser and C. Sämann, Extended Riemannian geometry I: Local double field theory, arXiv:1611.02772 [INSPIRE].
  11. [11]
    A. Deser, M.A. Heller and C. Sämann, Extended Riemannian geometry II: Local heterotic double field theory, JHEP 04 (2018) 106 [arXiv:1711.03308] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    M. Gualtieri, Generalized complex geometry, Ph.D. Thesis, Oxford University, Oxford U.K. (2003) [math/0401221] [INSPIRE].
  13. [13]
    D. Roytenberg, On the structure of graded symplectic supermanifolds and Courant algebroids, in Contemporary Mathematics. Vol. 315: Quantization, Poisson Brackets and Beyond, T. Voronov eds., AMS Press, Providence U.S.A. (2002) [math/0203110] [INSPIRE].
  14. [14]
    A. Deser and J. Stasheff, Even symplectic supermanifolds and double field theory, Commun. Math. Phys. 339 (2015) 1003 [arXiv:1406.3601] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    A. Deser and C. Sämann, Derived brackets and symmetries in Generalized Geometry and Double Field Theory, PoS(CORFU2017)141 [arXiv:1803.01659] [INSPIRE].
  16. [16]
    D. Fiorenza and M. Manetti, L structures on mapping cones, Algebra Number Theory 1 (2007) 301 [math/0601312].
  17. [17]
    E. Getzler, Higher derived brackets, arXiv:1010.5859.
  18. [18]
    D.S. Berman, M. Cederwall and M.J. Perry, Global aspects of double geometry, JHEP 09 (2014) 066 [arXiv:1401.1311] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    O. Hohm and B. Zwiebach, Large gauge transformations in double field theory, JHEP 02 (2013) 075 [arXiv:1207.4198] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    C.M. Hull, Finite gauge transformations and geometry in double field theory, JHEP 04 (2015) 109 [arXiv:1406.7794] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    J.-H. Park, Comments on double field theory and diffeomorphisms, JHEP 06 (2013) 098 [arXiv:1304.5946] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    G. Papadopoulos, Seeking the balance: Patching double and exceptional field theories, JHEP 10 (2014) 089 [arXiv:1402.2586] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    M.A. Heller, N. Ikeda and S. Watamura, Unified picture of non-geometric fluxes and T-duality in double field theory via graded symplectic manifolds, JHEP 02 (2017) 078 [arXiv:1611.08346] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    P. Bouwknegt, J. Evslin and V. Mathai, T duality: Topology change from H flux, Commun. Math. Phys. 249 (2004) 383 [hep-th/0306062] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    G.R. Cavalcanti and M. Gualtieri, Generalized complex geometry and T-duality, in A Celebration of the Mathematical Legacy of Raoul Bott (CRM Proceedings & Lecture Notes), AMS Press, Providence U.S.A. (2010), pg. 341 [arXiv:1106.1747] [INSPIRE].
  26. [26]
    O. Hohm and B. Zwiebach, L algebras and field theory, Fortsch. Phys. 65 (2017) 1700014 [arXiv:1701.08824] [INSPIRE].
  27. [27]
    B. Jurčo, L. Raspollini, C. Sämann and M. Wolf, L -algebras of classical field theories and the Batalin-Vilkovisky formalism, arXiv:1809.09899 [INSPIRE].
  28. [28]
    C.M. Hull and R.A. Reid-Edwards, Non-geometric backgrounds, doubled geometry and generalised T-duality, JHEP 09 (2009) 014 [arXiv:0902.4032] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    N.J. Hitchin, Lectures on special Lagrangian submanifolds, AMS/IP Stud. Adv. Math. 23 (2001) 151 [math/9907034] [INSPIRE].
  30. [30]
    S. Bunk, C. Sämann and R.J. Szabo, The 2-Hilbert space of a prequantum bundle gerbe, Rev. Math. Phys. 30 (2017) 1850001 [arXiv:1608.08455] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    P. Bressler and A. Chervov, Courant algebroids, J. Math. Sci. 128 (2005) 3030 [hep-th/0212195] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    B.L. Collier, Infinitesimal symmetries of Dixmier-Douady gerbes, arXiv:1108.1525.
  33. [33]
    N. Hitchin, Brackets, forms and invariant functionals, math/0508618 [INSPIRE].
  34. [34]
    A. Chatzistavrakidis, L. Jonke and O. Lechtenfeld, Dirac structures on nilmanifolds and coexistence of fluxes, Nucl. Phys. B 883 (2014) 59 [arXiv:1311.4878] [INSPIRE].
  35. [35]
    D. Baraglia, Leibniz algebroids, twistings and exceptional generalized geometry, J. Geom. Phys. 62 (2012) 903 [arXiv:1101.0856] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    A.S. Arvanitakis, Brane Wess-Zumino terms from AKSZ and exceptional generalised geometry as an L -algebroid, arXiv:1804.07303 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Faculty of Mathematics and PhysicsCharles UniversityPraha 8Czech Republic
  2. 2.Department of MathematicsHeriot-Watt UniversityEdinburghU.K.
  3. 3.Maxwell Institute for Mathematical SciencesEdinburghU.K.
  4. 4.Higgs Centre for Theoretical PhysicsEdinburghU.K.

Personalised recommendations