Skip to main content
Log in

Extended Riemannian Geometry I: Local Double Field Theory

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We present an extended version of Riemannian geometry suitable for the description of current formulations of double field theory (DFT). This framework is based on graded manifolds, and it yields extended notions of symmetries, dynamical data and constraints. In special cases, we recover general relativity with and without 1-, 2- and 3-form gauge potentials as well as DFT. We believe that our extended Riemannian geometry helps to clarify the role of various constructions in DFT. For example, it leads to a covariant form of the strong section condition. Furthermore, it should provide a useful step toward global and coordinate invariant descriptions of T- and U-duality invariant field theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giveon, A., Porrati, M., Rabinovici, E.: Target space duality in string theory. Phys. Rep. 244, 77 (1994). arXiv:hep-th/9401139

    Article  ADS  MathSciNet  Google Scholar 

  2. Tseytlin, A.A.: Duality symmetric closed string theory and interacting chiral scalars. Nucl. Phys. B 350, 395 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  3. Siegel, W.: Superspace duality in low-energy superstrings. Phys. Rev. D 48, 2826 (1993). arXiv:hep-th/9305073

    Article  ADS  MathSciNet  Google Scholar 

  4. Siegel, W.: Two-vierbein formalism for string-inspired axionic gravity. Phys. Rev. D 47, 5453 (1993). arXiv:hep-th/9302036

    Article  ADS  MathSciNet  Google Scholar 

  5. Hull, C.M.: A geometry for non-geometric string backgrounds. JHEP 0510, 065 (2005). arXiv:hep-th/0406102

    Article  ADS  MathSciNet  Google Scholar 

  6. Hull, C.M., Reid-Edwards, R.A.: Non-geometric backgrounds, doubled geometry and generalised T-duality. JHEP 0909, 014 (2009). arXiv:0902.4032 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  7. Hull, C., Zwiebach, B.: Double field theory. JHEP 0909, 99 (2009). arXiv:0904.4664 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  8. Zwiebach, B.: Double field theory, T-duality, and Courant brackets. Lect. Notes Phys. 851, 265 (2012). arXiv:1109.1782 [hep-th]

    Article  ADS  MATH  Google Scholar 

  9. Berman, D.S., Thompson, D.C.: Duality symmetric string and M-theory. Phys. Rep. 566, 1 (2014). arXiv:1306.2643 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  10. Aldazabal, G., Marques, D., Nunez, C.: Double field theory: a pedagogical review. Class. Quant. Grav. 30, 163001 (2013). arXiv:1305.1907 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Hohm, O., Lüst, D., Zwiebach, B.: The spacetime of double field theory: review, remarks, and outlook. Fortsch. Phys. 61, 926 (2013). arXiv:1309.2977 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Hitchin, N.: Generalized Calabi–Yau manifolds. Q. J. Math. Oxf. Ser. 54, 281 (2003). arXiv:math.DG/0209099

    Article  MathSciNet  MATH  Google Scholar 

  13. Hitchin, N.: Brackets, forms and invariant functionals. arXiv:math.DG/0508618

  14. Gualtieri, M.: Generalized complex geometry. Ph.D. thesis, Oxford (2003). arXiv:math.DG/0401221

  15. Vaisman, I.: On the geometry of double field theory. J. Math. Phys. 53, 033509 (2012). arXiv:1203.0836 [math.DG]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Vaisman, I.: Towards a double field theory on para-Hermitian manifolds. J. Math. Phys. 54, 123507 (2013). arXiv:1209.0152 [math.DG]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Hohm, O., Zwiebach, B.: Towards an invariant geometry of double field theory. J. Math. Phys. 54, 032303 (2013). arXiv:1212.1736 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Cederwall, M.: The geometry behind double geometry. JHEP 1409, 070 (2014). arXiv:1402.2513 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Blumenhagen, R., Hassler, F., Lüst, D.: Double field theory on group manifolds. JHEP 1502, 001 (2015). arXiv:1410.6374 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  20. Deser, A., Stasheff, J.: Even symplectic supermanifolds and double field theory. Commun. Math. Phys. 339, 1003 (2015). arXiv:1406.3601 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Bakas, I., Lüst, D., Plauschinn, E.: Towards a world-sheet description of doubled geometry in string theory. arXiv:1602.07705 [hep-th]

  22. Aschieri, P., Szabo, R.J.: Triproducts, nonassociative star products and geometry of R-flux string compactifications. J. Phys. Conf. Ser. 634, 012004 (2015). arXiv:1504.03915 [hep-th]

    Article  Google Scholar 

  23. Gawedzki, K.: Topological actions in two-dimensional quantum field theories. In: Nonperturbative Quantum Field Theory (Cargèse, 1987). NATO Adv. Sci. Inst. Ser. B Phys., vol. 185, pp. 101–141. Plenum, New York (1988)

  24. Freed, D.S., Witten, E.: Anomalies in string theory with D-branes. Asian J. Math 3, 819 (1999). arXiv:hep-th/9907189

    Article  MathSciNet  MATH  Google Scholar 

  25. Lada, T., Stasheff, J.: Introduction to sh Lie algebras for physicists. Int. J. Theor. Phys. 32, 1087 (1993). arXiv:hep-th/9209099

    Article  MathSciNet  MATH  Google Scholar 

  26. Roytenberg, D., Weinstein, A.: Courant algebroids and strongly homotopy Lie algebras. Lett. Math. Phys. 46, 81 (1998). arXiv:math.QA/9802118

    Article  MathSciNet  MATH  Google Scholar 

  27. Roytenberg, D.: Courant algebroids, derived brackets and even symplectic supermanifolds. Ph.D. thesis, UC Berkeley (1999). arXiv:math.DG/9910078

  28. Kosmann-Schwarzbach, Y.: Derived brackets. Lett. Math. Phys. 69, 61 (2004). arXiv:math.DG/0312524

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Blumenhagen, R., Fuchs, M.: Towards a theory of nonassociative gravity. JHEP 1607, 019 (2016). arXiv:1604.03253 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Berman, D.S., Cederwall, M., Perry, M.J.: Global aspects of double geometry. JHEP 1409, 066 (2014). arXiv:1401.1311 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Papadopoulos, G.: Seeking the balance: patching double and exceptional field theories. JHEP 1410, 089 (2014). arXiv:1402.2586 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Gualtieri, M.: Branes on Poisson varieties. arXiv:0710.2719 [math.DG]

  33. Jeon, I., Lee, K., Park, J.-H.: Differential geometry with a projection: application to double field theory. JHEP 1104, 14 (2011). arXiv:1011.1324 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Jeon, I., Lee, K., Park, J.-H.: Stringy differential geometry, beyond Riemann. Phys. Rev. D 84, 044022 (2011). arXiv:1105.6294 [hep-th]

    Article  ADS  Google Scholar 

  35. Hohm, O., Zwiebach, B.: On the Riemann tensor in double field theory. JHEP 1205, 126 (2012). arXiv:1112.5296 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Jurco, B., Vysoky, J.: Leibniz algebroids, generalized Bismut connections and Einstein–Hilbert actions. J. Geom. Phys. 97, 25 (2015). arXiv:1503.03069 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Deser, A., Heller, M., Saemann, C.: Extended Riemannian geometry II: local exceptional field theory (in preparation)

  38. Graña, M., Minasian, R., Petrini, M., Waldram, D.: T-duality, generalized geometry and non-geometric backgrounds. JHEP 0904, 075 (2009). arXiv:0807.4527 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  39. Shapere, A.D., Wilczek, F.: Selfdual models with theta terms. Nucl. Phys. B 320, 669 (1989)

    Article  ADS  Google Scholar 

  40. Giveon, A., Rabinovici, E., Veneziano, G.: Duality in string background space. Nucl. Phys. B 322, 167 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  41. Maharana, J., Schwarz, J.H.: Noncompact symmetries in string theory. Nucl. Phys. B 390, 3 (1993). arXiv:hep-th/9207016

    Article  ADS  MathSciNet  Google Scholar 

  42. Narain, K.S.: New heterotic string theories in uncompactified dimensions \(<10\). Phys. Lett. B 169, 41 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  43. Hohm, O., Hull, C., Zwiebach, B.: Generalized metric formulation of double field theory. JHEP 1008, 8 (2010). arXiv:1006.4823 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Sheng, Y., Zhu, C.: Higher extensions of Lie algebroids. Commun. Contemp. Math. 19, 1650034 (2016). arXiv:1103.5920 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  45. Batchelor, M.: The structure of supermanifolds. Trans. Am. Math. Soc. 253, 329 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  46. Bonavolonta, G., Poncin, N.: On the category of Lie n-algebroids. J. Geom. Phys. 73, 70–90 (2013). arXiv:1207.3590 [math.DG]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Roytenberg, D.: On the structure of graded symplectic supermanifolds and Courant algebroids. In: Voronov, T. (ed.) Quantization, Poisson Brackets and Beyond. Contemp. Math., vol. 315. American Mathematical Society, Providence (2002). arXiv:math.SG/0203110

    Google Scholar 

  48. Roytenberg, D.: On weak Lie 2-algebras. In: XXVI Workshop on Geometrical Methods in Physics 2007, Kielanowski, P., et al. (eds.), AIP Conference Proceedings, vol. 956. American Institute of Physics, Melville, NY arXiv:0712.3461 [math.QA]

  49. Baez, J., Crans, A.S.: Higher-dimensional algebra VI: Lie 2-algebras. Theory Appl. Categ. 12, 492 (2004). arXiv:math.QA/0307263

    MathSciNet  MATH  Google Scholar 

  50. Mehta, R., Zambon, M.: \(L_\infty \)-algebra actions. Differ. Geom. App. 30, 576 (2012). arXiv:1202.2607 [math.DG]

    Article  MathSciNet  MATH  Google Scholar 

  51. Fiorenza, D., Manetti, M.: \(L_\infty \) structures on mapping cones. Algebra Number Theory 1, 301 (2007). arXiv:math.QA/0601312

    Article  MathSciNet  MATH  Google Scholar 

  52. Getzler, E.: Higher derived brackets. arXiv:1010.5859 [math-ph]

  53. Ritter, P., Saemann, C.: Automorphisms of strong homotopy Lie algebras of local observables. arXiv:1507.00972 [hep-th]

  54. Baez, J.C., Hoffnung, A.E., Rogers, C.L.: Categorified symplectic geometry and the classical string. Commun. Math. Phys. 293, 701 (2010). arXiv:0808.0246 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Vinogradov, A.M.: The union of the Schouten and Nijenhuis brackets, cohomology, and superdifferential operators. Mat. Zametki 47, 138 (1990)

    MathSciNet  MATH  Google Scholar 

  56. Gruetzmann, M., Strobl, T.: General Yang–Mills type gauge theories for p-form gauge fields: from physics-based ideas to a mathematical framework OR From Bianchi identities to twisted Courant algebroids. Int. J. Geom. Methods Mod. Phys. 12, 1550009 (2014). arXiv:1407.6759 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  57. Severa, P., Weinstein, A.: Poisson geometry with a 3-form background. Prog. Theor. Phys. Suppl. 144, 145 (2001). arXiv:math.SG/0107133

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Severa, P.: Letter No. 5 to Alan Weinstein (1998). http://sophia.dtp.fmph.uniba.sk/~severa/letters/

  59. Bressler, P., Chervov, A.: Courant algebroids. J. Math. Sci. 128, 3030 (2005). arXiv:hep-th/0212195

    Article  MathSciNet  MATH  Google Scholar 

  60. Roytenberg, D.: Quasi-Lie bialgebroids and twisted Poisson manifolds. Lett. Math. Phys. 61, 123 (2002). arXiv:math/0112152

    Article  MathSciNet  MATH  Google Scholar 

  61. Murray, M.K.: Bundle gerbes. J. Lond. Math. Soc. 54, 403 (1996). arXiv:dg-ga/9407015

    Article  MathSciNet  MATH  Google Scholar 

  62. Murray, M.K.: An introduction to bundle gerbes. In: Garcia-Prada, O., Bourguignon, J.-P., Salamon, S. (eds.) The Many Facets of Geometry: A Tribute to Nigel Hitchin. Oxford University Press, Oxford (2010). arXiv:0712.1651 [math.DG]

    Google Scholar 

  63. Rogers, C.L.: 2-plectic geometry, Courant algebroids, and categorified prequantization. J. Symp. Geom. 11, 53 (2013). arXiv:1009.2975 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  64. Fiorenza, D., Rogers, C.L., Schreiber, U.: \(L_\infty \)-algebras of local observables from higher prequantum bundles. Homol. Homot. Appl. 16, 107 (2014). arXiv:1304.6292 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  65. Kosmann-Schwarzbach, Y.: From Poisson algebras to Gerstenhaber algebras. Ann. Inst. Fourier 46, 1243 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  66. Hull, C.M.: Generalised geometry for M-theory. JHEP 0707, 079 (2007). arXiv:hep-th/0701203

    Article  ADS  MathSciNet  Google Scholar 

  67. Berman, D.S., Godazgar, H., Perry, M.J.: \(SO(5,5)\) duality in M-theory and generalized geometry. Phys. Lett. B 700, 65 (2011). arXiv:1103.5733 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  68. Hohm, O., Hull, C., Zwiebach, B.: Background independent action for double field theory. JHEP 1007, 016 (2010). arXiv:1003.5027 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. Bouwknegt, P., Jurco, B.: AKSZ construction of topological open \(p\)-brane action and Nambu brackets. Rev. Math. Phys. 25, 1330004 (2013). arXiv:1110.0134 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  70. Getzler, E.: Lie theory for nilpotent \(L_\infty \)-algebras. Ann. Math. 170, 271 (2009). arXiv:math.AT/0404003

    Article  MathSciNet  MATH  Google Scholar 

  71. Henriques, A.: Integrating \(L_\infty \)-algebras. Comput. Math. 144, 1017 (2008). arXiv:math.CT/0603563

    MathSciNet  MATH  Google Scholar 

  72. Ševera, P., Širaň, M.: Integration of differential graded manifolds. arXiv:1506.04898 [math.DG]

  73. Hohm, O., Zwiebach, B.: Large gauge transformations in double field theory. JHEP 1302, 075 (2013). arXiv:1207.4198 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. Bouwknegt, P., Evslin, J., Mathai, V.: T-Duality: topology change from H-flux. Commun. Math. Phys. 249, 383 (2004). arXiv:hep-th/0306062

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. Kachru, S., Schulz, M.B., Tripathy, P.K., Trivedi, S.P.: New supersymmetric string compactifications. JHEP 0303, 61 (2003). arXiv:hep-th/0211182

    Article  ADS  MathSciNet  Google Scholar 

  76. Mathai, V., Rosenberg, J.: T-duality for torus bundles via noncommutative topology. Commun. Math. Phys 253, 705 (2004). arXiv:hep-th/0401168

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. Li-Bland, D., Severa, P.: Integration of exact Courant algebroids. ERAMS 19, 58 (2012). arXiv:1101.3996 [math.DG]

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank David Berman, Ralph Blumenhagen, André Coimbra, Dieter Lüst and Jim Stasheff for discussions. The work of CS was partially supported by the Consolidated Grant ST/L000334/1 from the UK Science and Technology Facilities Council. AD and CS want to thank the Department of Mathematics of Heriot-Watt University and the Institut für Theoretische Physik in Hannover for hospitality, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Deser.

Additional information

Communicated by Boris Pioline.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deser, A., Sämann, C. Extended Riemannian Geometry I: Local Double Field Theory. Ann. Henri Poincaré 19, 2297–2346 (2018). https://doi.org/10.1007/s00023-018-0694-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-018-0694-2

Navigation