Skip to main content
Log in

Courant Algebroids

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. D. Alekseevskii, P. W. Michor, and W. Ruppert, “Extensions of Lie algebras,” math. DG/0005042.

  2. M. F. Atiyah, “Complex analytic connections in fibre bundles,” Trans. Amer. Math. Soc., 85, 181–207 (1957).

    Google Scholar 

  3. A. A. Beilinson and V. V. Schechtman, “Determinant bundles and Virasoro algebras,” Commun. Math. Phys., 118 No.4, 651–701 (1988).

    Google Scholar 

  4. J.-L. Brylinski, Loop Spaces, Characteristic Classes and Geometric Quantization, Progress in Math., Vol. 107 Birkhauser (1993).

  5. J.-L. Brylinski, “Gerbes on complex reductive Lie groups,” math. DG/0002158.

  6. A. Cannas da Silva and A. Weinstein, Geometric Models for Noncommutative Algebras, Berkeley Math. Lecture Notes, 10. Amer. Math. Soc., Providence, RI; Berkeley Center for Pure and Applied Mathematics, Berkeley, CA (1999), xiv+184 pp. ISBN: 0-8218-0952-0 (available at A. Weinstein homepage http://www.math.berkeley.edu/alanw/).

    Google Scholar 

  7. J. Giraud, Cohomologie non Abelienne, Grundlehren, 179 Springer-Verlag (1971).

  8. A. Alan Carey, A. Mickelsson, and M. Murray, “Bundle gerbes applied to quantum field theory,” hep-th/9711133.

  9. E. R. Sharpe, “Discrete torsion and gerbes, I, II,” hep-th/9909108, hep-th/9909120.

  10. A. Cattaneo and G. Felder, “Poisson sigma models and symplectic groupoids,” math.SG/0003023.

  11. M. Crainic and R. Fernandes, “Integrability of Lie brackets,” math.DG/0105033.

  12. T. J. Courant, “Dirac manifolds,” Trans. Amer. Math. Soc., 319 631–661 (1990).

    Google Scholar 

  13. I. Dorfman, “Deformations of Hamiltonian structures and integrable systems,” In: Nonlinear and Turbulent Processes in Physics [in Russian], Vol. 3 (Kiev 1983), Harwood Academic Publ., Chur (1984), pp. 1313–1318.

    Google Scholar 

  14. M. V. Karasev, “Analogs of objects of the theory of Lie groups for nonlinear Poisson brackets,” Izv. Akad. Nauk SSSR, Ser. Mat., 50 No.3, 508–538, 638 (1986).

    Google Scholar 

  15. J.-L. Koszul, “Crochet de Schouten-Nijenhuis et cohomologie,” In: The Mathematical Heritage of Cartan (Lyon, 1984), Asterisque, Numero Hors Serie (1985), pp. 257–271.

  16. S. Evens, J.-H. Lu, and A. Weinstein, “Transverse measures, the modular class, and a cohomology pairing for Lie algebroids,” Quart. J. Math. Oxford Ser. (2), 50 No.200, 417–436 (1999).

    Google Scholar 

  17. N. Hitchin, “Lectures on special Lagrangian submanifolds,” math. DG/9907034.

  18. M. Kapranov, “Rozansky-Witten invariants via Atiyah classes,” alg-geom/9704009.

  19. C. Klimcik and T. Strobl, “WZW-Poisson manifolds,” math.SG/0104189.

  20. A. Levin and M. Olshanetsky, “Hamiltonian algebroid symmetries in W-gravity and Poisson sigma-model, ” hep-th/0010043.

  21. Z.-J. Liu, A. Weinstein, and P. Xu, “Manin triples for Lie bialgebroids,” J. Diff. Geom., 45 547–57 (1997).

    Google Scholar 

  22. Z.-J. Liu and P. Xu, “Dirac structures and dynamical r-matrices”, math.DG/9903119

  23. J. L. Loday, “Une version non commutative des algebres de Lie: les algebres de Leibniz,” Enseign. Math., 39 269–293 (1993).

    Google Scholar 

  24. K. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, LMS Lecture Notes Series, Cambridge Univ. Press (1987). (See also K. Mackenzie’s homepage http://www.shef.ac.uk/pm1kch m/rwork.html for a bibliography list on algebroids and some comments on the history.)

  25. F. Malikov, V. Schechtman, and A. Vaintrob, “Chiral de Rham complex,” math.AG/9803041.

  26. F. Malikov and V. Schechtman, “Chiral de Rham complex. II,” math.AG/9901065.

  27. D. Roytenberg, “Courant algebroids, derived brackets and even symplectic supermanifolds,” Ph.D. Thesis, University of California, Berkeley (1999), preprint math.DG/9910078.

    Google Scholar 

  28. D. Roytenberg and A. Weinstein, “Courant algebroids and strongly homotopy Lie algebras,” Lett. Math. Phys., 46, 81–93 (1998).

    Google Scholar 

  29. V. N. Rubtsov, “Cohomology of the Der-complex,” Uspekhi Mat. Nauk, 35 No.4(214), 209–210 (1980).

    Google Scholar 

  30. V. N. Rubtsov, “Relatively invariant Der-cohomology of modules,” Uspekhi Mat. Nauk, 38 No.1(229), 189–190 (1983).

    Google Scholar 

  31. P. Severa and A. Weinstein, “Poisson geometry with a 3-form background,” math.SG/0107133.

  32. P. Bressler, Vertex Algebroid I, math. AG/0202185.

Download references

Authors

Additional information

__________

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory. Vol. 117, Geometry, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bressler, P., Chervov, A. Courant Algebroids. J Math Sci 128, 3030–3053 (2005). https://doi.org/10.1007/s10958-005-0251-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-005-0251-7

Navigation