Journal of High Energy Physics

, 2013:75 | Cite as

Large gauge transformations in double field theory

Article

Abstract

Finite gauge transformations in double field theory can be defined by the exponential of generalized Lie derivatives. We interpret these transformations as ‘generalized coordinate transformations’ in the doubled space by proposing and testing a formula that writes large transformations in terms of derivatives of the coordinate maps. Successive generalized coordinate transformations give a generalized coordinate transformation that differs from the direct composition of the original two. Instead, it is constructed using the Courant bracket. These transformations form a group when acting on fields but, intriguingly, do not associate when acting on coordinates.

Keywords

Gauge Symmetry Differential and Algebraic Geometry Space-Time Symmetries String Duality 

References

  1. [1]
    C. Hull and B. Zwiebach, Double field theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    C. Hull and B. Zwiebach, The gauge algebra of double field theory and Courant brackets, JHEP 09 (2009) 090 [arXiv:0908.1792] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].ADSGoogle Scholar
  6. [6]
    W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [INSPIRE].ADSGoogle Scholar
  7. [7]
    A.A. Tseytlin, Duality symmetric formulation of string world sheet dynamics, Phys. Lett. B 242 (1990) 163 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    A.A. Tseytlin, Duality symmetric closed string theory and interacting chiral scalars, Nucl. Phys. B 350 (1991) 395 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    M.J. Duff, Duality rotations in string theory, Nucl. Phys. B 335 (1990) 610 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    M.J. Duff and J.X. Lu, Duality rotations in membrane theory, Nucl. Phys. B 347 (1990) 394 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    O. Hohm and S.K. Kwak, Frame-like geometry of double field theory, J. Phys. A 44 (2011) 085404 [arXiv:1011.4101] [INSPIRE].MathSciNetADSGoogle Scholar
  12. [12]
    S.K. Kwak, Invariances and equations of motion in double field theory, JHEP 10 (2010) 047 [arXiv:1008.2746] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    O. Hohm, T-duality versus gauge symmetry, Prog. Theor. Phys. Suppl. 188 (2011) 116 [arXiv:1101.3484] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  14. [14]
    B. Zwiebach, Double field theory, T-duality and courant brackets, Lect. Notes Phys. 851 (2012) 265 [arXiv:1109.1782] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    O. Hohm, On factorizations in perturbative quantum gravity, JHEP 04 (2011) 103 [arXiv:1103.0032] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    O. Hohm and S.K. Kwak, Double field theory formulation of heterotic strings, JHEP 06 (2011) 096 [arXiv:1103.2136] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    O. Hohm, S.K. Kwak and B. Zwiebach, Unification of type II strings and T-duality, Phys. Rev. Lett. 107 (2011) 171603 [arXiv:1106.5452] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    O. Hohm, S.K. Kwak and B. Zwiebach, Double field theory of Type II strings, JHEP 09 (2011) 013 [arXiv:1107.0008] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    O. Hohm and S.K. Kwak, Massive type II in double field theory, JHEP 11 (2011) 086 [arXiv:1108.4937] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    O. Hohm and S.K. Kwak, N = 1 supersymmetric double field theory, JHEP 03 (2012) 080 [arXiv:1111.7293] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    O. Hohm and B. Zwiebach, On the Riemann tensor in double field theory, JHEP 05 (2012) 126 [arXiv:1112.5296] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    C. Hillmann, Generalized E 7(7) coset dynamics and D = 11 supergravity, JHEP 03 (2009) 135 [arXiv:0901.1581] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    D.S. Berman and M.J. Perry, Generalized geometry and M-theory, JHEP 06 (2011) 074 [arXiv:1008.1763] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    D.S. Berman, H. Godazgar and M.J. Perry, SO(5, 5) duality in M-theory and generalized geometry, Phys. Lett. B 700 (2011) 65 [arXiv:1103.5733] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    D.S. Berman, E.T. Musaev and M.J. Perry, Boundary terms in generalized geometry and doubled field theory, Phys. Lett. B 706 (2011) 228 [arXiv:1110.3097] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    D.S. Berman, H. Godazgar, M. Godazgar and M.J. Perry, The local symmetries of M-theory and their formulation in generalised geometry, JHEP 01 (2012) 012 [arXiv:1110.3930] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    D.S. Berman, H. Godazgar, M.J. Perry and P. West, Duality invariant actions and generalised geometry, JHEP 02 (2012) 108 [arXiv:1111.0459] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    P. West, E 11 , generalised space-time and IIA string theory, Phys. Lett. B 696 (2011) 403 [arXiv:1009.2624] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A. Rocen and P. West, E 11 , generalised space-time and IIA string theory: the RR sector, arXiv:1012.2744 [INSPIRE].
  30. [30]
    I. Jeon, K. Lee and J.-H. Park, Differential geometry with a projection: Application to double field theory, JHEP 04 (2011) 014 [arXiv:1011.1324] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    I. Jeon, K. Lee and J.-H. Park, Stringy differential geometry, beyond Riemann, Phys. Rev. D 84 (2011) 044022 [arXiv:1105.6294] [INSPIRE].ADSGoogle Scholar
  32. [32]
    I. Jeon, K. Lee and J.-H. Park, Incorporation of fermions into double field theory, JHEP 11 (2011) 025 [arXiv:1109.2035] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    I. Jeon, K. Lee and J.-H. Park, Supersymmetric double field theory: stringy reformulation of supergravity, Phys. Rev. D 85 (2012) 081501 [Erratum ibid. D 86 (2012) 089903] [arXiv:1112.0069] [INSPIRE].ADSGoogle Scholar
  34. [34]
    I. Jeon, K. Lee and J.-H. Park, Ramond-Ramond cohomology and O(D, D) T-duality, JHEP 09 (2012) 079 [arXiv:1206.3478] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    M.B. Schulz, T-folds, doubled geometry and the SU(2) WZW model, JHEP 06 (2012) 158 [arXiv:1106.6291] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    N.B. Copland, Connecting T-duality invariant theories, Nucl. Phys. B 854 (2012) 575 [arXiv:1106.1888] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    N.B. Copland, A double σ-model for double field theory, JHEP 04 (2012) 044 [arXiv:1111.1828] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    D.C. Thompson, Duality invariance: from M-theory to double field theory, JHEP 08 (2011) 125 [arXiv:1106.4036] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    C. Albertsson, S.-H. Dai, P.-W. Kao and F.-L. Lin, Double field theory for double D-branes, JHEP 09 (2011) 025 [arXiv:1107.0876] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    D. Andriot, M. Larfors, D. Lüst and P. Patalong, A ten-dimensional action for non-geometric fluxes, JHEP 09 (2011) 134 [arXiv:1106.4015] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    G. Aldazabal, W. Baron, D. Marques and C. Núñez, The effective action of double field theory, JHEP 11 (2011) 052 [Erratum ibid. 1111 (2011) 109] [arXiv:1109.0290] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    D. Geissbuhler, Double field theory and N = 4 gauged supergravity, JHEP 11 (2011) 116 [arXiv:1109.4280] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    M. Graña and D. Marques, Gauged double field theory, JHEP 04 (2012) 020 [arXiv:1201.2924] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as generalised geometry I: type II theories, JHEP 11 (2011) 091 [arXiv:1107.1733] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    A. Coimbra, C. Strickland-Constable and D. Waldram, E d(d) × R + generalised geometry, connections and M-theory, arXiv:1112.3989 [INSPIRE].
  46. [46]
    I. Vaisman, On the geometry of double field theory, J. Math. Phys. 53 (2012) 033509 [arXiv:1203.0836] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, A geometric action for non-geometric fluxes, Phys. Rev. Lett. 108 (2012) 261602 [arXiv:1202.3060] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, Non-geometric fluxes in supergravity and double field theory, Fortsch. Phys. 60 (2012) 1150 [arXiv:1204.1979] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  49. [49]
    G. Dibitetto, J. Fernandez-Melgarejo, D. Marques and D. Roest, Duality orbits of non-geometric fluxes, Fortsch. Phys. 60 (2012) 1123 [arXiv:1203.6562] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  50. [50]
    T. Kikuchi, T. Okada and Y. Sakatani, Rotating string in doubled geometry with generalized isometries, Phys. Rev. D 86 (2012) 046001 [arXiv:1205.5549] [INSPIRE].ADSGoogle Scholar
  51. [51]
    E. Malek, U-duality in three and four dimensions, arXiv:1205.6403 [INSPIRE].
  52. [52]
    M. Bruni, S. Matarrese, S. Mollerach and S. Sonego, Perturbations of space-time: gauge transformations and gauge invariance at second order and beyond, Class. Quant. Grav. 14 (1997) 2585 [gr-qc/9609040] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  53. [53]
    L.R.W. Abramo, R.H. Brandenberger and V.F. Mukhanov, The energy-momentum tensor for cosmological perturbations, Phys. Rev. D 56 (1997) 3248 [gr-qc/9704037] [INSPIRE].ADSGoogle Scholar
  54. [54]
    R. Blumenhagen and E. Plauschinn, Nonassociative gravity in string theory?, J. Phys. A 44 (2011) 015401 [arXiv:1010.1263] [INSPIRE].MathSciNetADSGoogle Scholar
  55. [55]
    D. Lüst, T-duality and closed string non-commutative (doubled) geometry, JHEP 12 (2010) 084 [arXiv:1010.1361] [INSPIRE].CrossRefGoogle Scholar
  56. [56]
    R. Blumenhagen, A. Deser, D. Lüst, E. Plauschinn and F. Rennecke, Non-geometric fluxes, asymmetric strings and nonassociative geometry, J. Phys. A 44 (2011) 385401 [arXiv:1106.0316] [INSPIRE].ADSGoogle Scholar
  57. [57]
    D. Mylonas, P. Schupp and R.J. Szabo, Membrane σ-models and quantization of non-geometric flux backgrounds, JHEP 09 (2012) 012 [arXiv:1207.0926] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    C. Hull, A geometry for non-geometric string backgrounds, JHEP 10 (2005) 065 [hep-th/0406102] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Arnold Sommerfeld Center for Theoretical PhysicsMunichGermany
  2. 2.Center for Theoretical Physics, Massachusetts Institute of TechnologyCambridgeU.S.A

Personalised recommendations