Gluino mass limits with sbottom NLSP in coannihilation scenarios

Abstract

In view of the recent interest in the pMSSM with light third generation squarks, we consider a hitherto neglected scenario where the lighter bottom squark \( \left({\tilde{b}}_1\right) \) is the next lightest supersymmetric particle (NLSP) which co-annihilates with the lightest supersymmetric particle (LSP), the dark matter (DM) candidate. Since the co-annihilation cross section receives contributions from both electroweak and strong vertices, it is relatively large. As a result relatively large NLSP-LSP mass difference (25-35 GeV) is consistent with the PLANCK data. This facilitates the LHC signatures of this scenario. We consider several variants of the sbottom NLSP scenario with and without light stops and delineate the parameter space allowed by the PLANCK data. We point out several novel signal (e.g., \( {\tilde{t}}_1\to {\tilde{b}}_1W \)) which are not viable in the stop NLSP scenario of DM production. Finally, we consider gluino \( \left(\tilde{g}\right) \) decays in this scenario and using the current ATLAS data in the jets (with or without b-tagging) + channel, obtain new limits in the \( {m}_{{\tilde{b}}_1}-{m}_{\tilde{g}} \) mass plane. We find that for \( {m}_{\tilde{b}1} \) upto 500 GeV, \( {m}_{\tilde{g}} \) ≥ 1.1-1.2 TeV in this scenario.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    H.P. Nilles, Supersymmetry, Supergravity and Particle Physics, Phys. Rept. 110 (1984) 1 [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    H.E. Haber and G.L. Kane, The Search for Supersymmetry: Probing Physics Beyond the Standard Model, Phys. Rept. 117 (1985) 75 [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    S.P. Martin, A Supersymmetry primer, Adv. Ser. Direct. High Energy Phys. 21 (2010) 1 [hep-ph/9709356] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    J. Wess and J. Bagger, Supersymmetry and Supergravity, 2nd ed., Princeton University Press, Princeton U.S.A. (1991).

    Google Scholar 

  5. [5]

    M. Drees, P. Roy and R. M. Godbole, Theory and Phenomenology of Sparticles, World Scientific, Singapore (2005).

    Book  Google Scholar 

  6. [6]

    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    W.L. Freedman and M.S. Turner, Measuring and understanding the universe, Rev. Mod. Phys. 75 (2003) 1433 [astro-ph/0308418] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    L. Roszkowski, Particle dark matter: A Theorists perspective, Pramana 62 (2004) 389 [hep-ph/0404052] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    H. Baer and X. Tata, Dark matter and the LHC, arXiv:0805.1905 [INSPIRE].

  11. [11]

    A. Datta, B. Mukhopadhyaya and A. Raychaudhuri (eds.), Physics at the Large Hadron Collider, INSA, Springer Germany (2009).

    Google Scholar 

  12. [12]

    ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum and 20.3 fb −1 of \( \sqrt{s} \) = 8 TeV proton-proton collision data, ATLAS-CONF-2013-047 (2013).

  13. [13]

    ATLAS collaboration, Search for strong production of supersymmetric particles in final states with missing transverse momentum and at least three b-jets using 20.1 fb −1 of pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS Detector., ATLAS-CONF-2013-061 (2013).

  14. [14]

    ATLAS collaboration, Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2013-062 (2013).

  15. [15]

    ATLAS collaboration, Search for supersymmetry at \( \sqrt{s} \) =8 TeV in final states with jets and two same-sign leptons or three leptons with the ATLAS detector, JHEP 06 (2014) 035 [arXiv:1404.2500] [INSPIRE].

    ADS  Google Scholar 

  16. [16]

    CMS collaboration, Search for top-squark pair production in the single-lepton final state in pp collisions at \( \sqrt{s} \) = 8 TeV, Eur. Phys. J. C 73 (2013) 2677 [arXiv:1308.1586] [INSPIRE].

    ADS  Google Scholar 

  17. [17]

    CMS collaboration, Search for supersymmetry in pp collisions at \( \sqrt{s} \) =8 TeV in events with a single lepton, large jet multiplicity and multiple b jets, Phys. Lett. B 733 (2014) 328 [arXiv:1311.4937] [INSPIRE].

    ADS  Google Scholar 

  18. [18]

    CMS collaboration, Search for new physics in events with same-sign dileptons and jets in pp collisions at \( \sqrt{s} \) = 8 TeV, JHEP 01 (2014) 163 [arXiv:1311.6736] [INSPIRE].

    ADS  Google Scholar 

  19. [19]

    CMS collaboration, Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at \( \sqrt{s} \) = 8 TeV, JHEP 06 (2014) 055 [arXiv:1402.4770] [INSPIRE].

    ADS  Google Scholar 

  20. [20]

    T.J. LeCompte and S.P. Martin, Compressed supersymmetry after 1/fb at the Large Hadron Collider, Phys. Rev. D 85 (2012) 035023 [arXiv:1111.6897] [INSPIRE].

    ADS  Google Scholar 

  21. [21]

    H.K. Dreiner, M. Krämer and J. Tattersall, How low can SUSY go? Matching, monojets and compressed spectra, Europhys. Lett. 99 (2012) 61001 [arXiv:1207.1613] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    B. Bhattacherjee and K. Ghosh, Degenerate SUSY search at the 8 TeV LHC, arXiv:1207.6289 [INSPIRE].

  23. [23]

    B. Bhattacherjee, A. Choudhury, K. Ghosh and S. Poddar, Compressed supersymmetry at 14 TeV LHC, Phys. Rev. D 89 (2014) 037702 [arXiv:1308.1526] [INSPIRE].

    ADS  Google Scholar 

  24. [24]

    T. Cohen, T. Golling, M. Hance, A. Henrichs, K. Howe et al., SUSY Simplified Models at 14, 33 and 100 TeV Proton Colliders, JHEP 04 (2014) 117 [arXiv:1311.6480] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    S. Mukhopadhyay, M.M. Nojiri and T.T. Yanagida, Compressed SUSY search at the 13 TeV LHC using kinematic correlations and structure of ISR jets, JHEP 1410 (2014) 12 [arXiv:1403.6028] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    B. Fuks, P. Richardson and A. Wilcock, Pinning down compressed supersymmetric scenarios with monotop probes, arXiv:1408.3634 [INSPIRE].

  27. [27]

    C. Brust, A. Katz, S. Lawrence and R. Sundrum, SUSY, the Third Generation and the LHC, JHEP 03 (2012) 103 [arXiv:1110.6670] [INSPIRE].

    ADS  Article  Google Scholar 

  28. [28]

    N. Desai and B. Mukhopadhyaya, Constraints on supersymmetry with light third family from LHC data, JHEP 05 (2012) 057 [arXiv:1111.2830] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    Z. Han, A. Katz, D. Krohn and M. Reece, (Light) Stop Signs, JHEP 08 (2012) 083 [arXiv:1205.5808] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    X.-J. Bi, Q.-S. Yan and P.-F. Yin, Light stop/sbottom pair production searches in the NMSSM, Phys. Rev. D 87 (2013) 035007 [arXiv:1209.2703] [INSPIRE].

    ADS  Google Scholar 

  31. [31]

    B. Bhattacherjee, S.K. Mandal and M. Nojiri, Top Polarization and Stop Mixing from Boosted Jet Substructure, JHEP 03 (2013) 105 [arXiv:1211.7261] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    M. Carena, S. Gori, N.R. Shah, C.E.M. Wagner and L.-T. Wang, Light Stops, Light Staus and the 125 GeV Higgs, JHEP 08 (2013) 087 [arXiv:1303.4414] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    P. Agrawal and C. Frugiuele, Mixing stops at the LHC, JHEP 01 (2014) 115 [arXiv:1304.3068] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    Y. Bai, H.-C. Cheng, J. Gallicchio and J. Gu, A Toolkit of the Stop Search via the Chargino Decay, JHEP 08 (2013) 085 [arXiv:1304.3148] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    C. Han, K.-i. Hikasa, L. Wu, J.M. Yang and Y. Zhang, Current experimental bounds on stop mass in natural SUSY, JHEP 10 (2013) 216 [arXiv:1308.5307] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    D. Goncalves, D. Lopez-Val, K. Mawatari and T. Plehn, Automated third generation squark production to next-to-leading order, Phys. Rev. D 90 (2014) 075007 [arXiv:1407.4302] [INSPIRE].

    ADS  Google Scholar 

  37. [37]

    M.A. Ajaib, T. Li and Q. Shafi, Stop-Neutralino Coannihilation in the Light of LHC, Phys. Rev. D 85 (2012) 055021 [arXiv:1111.4467] [INSPIRE].

    ADS  Google Scholar 

  38. [38]

    A. Choudhury and A. Datta, New limits on top squark NLSP from LHC 4.7 fb−1 data, Mod. Phys. Lett. A 27 (2012) 1250188 [arXiv:1207.1846] [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    K. Ghosh et al., Top jets as a probe of degenerate stop-NLSP LSP scenario in the framework of CMSSM, Phys. Rev. Lett. 110 (2013) 141801 [arXiv:1207.2429] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    Z.-H. Yu, X.-J. Bi, Q.-S. Yan and P.-F. Yin, Detecting light stop pairs in coannihilation scenarios at the LHC, Phys. Rev. D 87 (2013) 055007 [arXiv:1211.2997] [INSPIRE].

    ADS  Google Scholar 

  41. [41]

    K. Krizka, A. Kumar and D.E. Morrissey, Very Light Scalar Top Quarks at the LHC, Phys. Rev. D 87 (2013) 095016 [arXiv:1212.4856] [INSPIRE].

    ADS  Google Scholar 

  42. [42]

    G. Bélanger, D. Ghosh, R. Godbole, M. Guchait and D. Sengupta, Probing the flavor violating scalar top quark signal at the LHC, Phys. Rev. D 89 (2014) 015003 [arXiv:1308.6484] [INSPIRE].

    ADS  Google Scholar 

  43. [43]

    A. Belyaev, T. Lastovicka, A. Nomerotski and G. Lastovicka-Medin, Discovering Bottom Squark Co-annihilation at ILC, Phys. Rev. D 81 (2010) 035011 [arXiv:0912.2411] [INSPIRE].

    ADS  Google Scholar 

  44. [44]

    M. Adeel Ajaib, T. Li and Q. Shafi, Searching for NLSP Sbottom at the LHC, Phys. Lett. B 701 (2011) 255 [arXiv:1104.0251] [INSPIRE].

    ADS  Article  Google Scholar 

  45. [45]

    I. Gogoladze, S. Raza and Q. Shafi, Neutralino-Sbottom Coannihilation in SU(5), JHEP 03 (2012) 054 [arXiv:1111.6299] [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    E. Alvarez and Y. Bai, Reach the Bottom Line of the Sbottom Search, JHEP 08 (2012) 003 [arXiv:1204.5182] [INSPIRE].

    ADS  Article  Google Scholar 

  47. [47]

    M. Badziak, Yukawa unification in SUSY SO(10) in light of the LHC Higgs data, Mod. Phys. Lett. A 27 (2012) 1230020 [arXiv:1205.6232] [INSPIRE].

    ADS  Article  Google Scholar 

  48. [48]

    J. Alwall, J.L. Feng, J. Kumar and S. Su, Bs with Direct Decays: Tevatron and LHC Discovery Prospects in the \( b\overline{b} \) + MET Channel, Phys. Rev. D 84 (2011) 074010 [arXiv:1107.2919] [INSPIRE].

    ADS  Google Scholar 

  49. [49]

    H.M. Lee, V. Sanz and M. Trott, Hitting sbottom in natural SUSY, JHEP 05 (2012) 139 [arXiv:1204.0802] [INSPIRE].

    ADS  Article  Google Scholar 

  50. [50]

    D. Ghosh and D. Sengupta, Searching the sbottom in the four lepton channel at the LHC, Eur. Phys. J. C 73 (2013) 2342 [arXiv:1209.4310] [INSPIRE].

    ADS  Article  Google Scholar 

  51. [51]

    A. Chakraborty, D.K. Ghosh, D. Ghosh and D. Sengupta, Stop and sbottom search using dileptonic M T2 variable and boosted top technique at the LHC, JHEP 10 (2013) 122 [arXiv:1303.5776] [INSPIRE].

    ADS  Article  Google Scholar 

  52. [52]

    J.S. Hagelin, S. Kelley and T. Tanaka, Supersymmetric flavor changing neutral currents: Exact amplitudes and phenomenological analysis, Nucl. Phys. B 415 (1994) 293 [INSPIRE].

    ADS  Article  Google Scholar 

  53. [53]

    T. Ibrahim and P. Nath, The Neutron and the lepton EDMs in MSSM, large CP-violating phases and the cancellation mechanism, Phys. Rev. D 58 (1998) 111301 [Erratum ibid. D 60 (1999) 099902] [hep-ph/9807501] [INSPIRE].

  54. [54]

    M. Pospelov and A. Ritz, Electric dipole moments as probes of new physics, Annals Phys. 318 (2005) 119 [hep-ph/0504231] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  55. [55]

    MSSM Working Group collaboration, A. Djouadi et al., The Minimal supersymmetric standard model: Group summary report, hep-ph/9901246 [INSPIRE].

  56. [56]

    ATLAS collaboration, Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, JHEP 09 (2014) 015 [arXiv:1406.1122] [INSPIRE].

    ADS  Google Scholar 

  57. [57]

    ATLAS collaboration, Search for top squark pair production in final states with one isolated lepton, jets and missing transverse momentum in \( \sqrt{s} \) =8 TeV pp collisions with the ATLAS detector, JHEP 11 (2014) 118 [arXiv:1407.0583] [INSPIRE].

    ADS  Google Scholar 

  58. [58]

    ATLAS collaboration, Search for direct third-generation squark pair production in final states with missing transverse momentum and two b-jets in \( \sqrt{s} \) = 8 TeV pp collisions with the ATLAS detector, JHEP 10 (2013) 189 [arXiv:1308.2631] [INSPIRE].

    ADS  Google Scholar 

  59. [59]

    ATLAS collaboration, Search for pair-produced third-generation squarks decaying via charm quarks or in compressed supersymmetric scenarios in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 052008 [arXiv:1407.0608] [INSPIRE].

    ADS  Google Scholar 

  60. [60]

    J. Hisano, K. Kawagoe, R. Kitano and M.M. Nojiri, Scenery from the top: Study of the third generation squarks at CERN LHC, Phys. Rev. D 66 (2002) 115004 [hep-ph/0204078] [INSPIRE].

    ADS  Google Scholar 

  61. [61]

    J. Hisano, K. Kawagoe and M.M. Nojiri, A Detailed study of the gluino decay into the third generation squarks at the CERN LHC, Phys. Rev. D 68 (2003) 035007 [hep-ph/0304214] [INSPIRE].

    ADS  Google Scholar 

  62. [62]

    N. Desai and B. Mukhopadhyaya, Signals of supersymmetry with inaccessible first two families at the Large Hadron Collider, Phys. Rev. D 80 (2009) 055019 [arXiv:0901.4883] [INSPIRE].

    ADS  Google Scholar 

  63. [63]

    N. Bhattacharyya, A. Choudhury and A. Datta, SUSY signals with small and large trilinear couplings at the LHC 7 TeV runs and neutralino dark matter, Phys. Rev. D 83 (2011) 115025 [arXiv:1104.0333] [INSPIRE].

    ADS  Google Scholar 

  64. [64]

    P. Bandyopadhyay and B. Bhattacherjee, Boosted top quarks in supersymmetric cascade decays at the LHC, Phys. Rev. D 84 (2011) 035020 [arXiv:1012.5289] [INSPIRE].

    ADS  Google Scholar 

  65. [65]

    N. Bhattacharyya, A. Choudhury and A. Datta, Low mass neutralino dark matter in mSUGRA and more general models in the light of LHC data, Phys. Rev. D 84 (2011) 095006 [arXiv:1107.1997] [INSPIRE].

    ADS  Google Scholar 

  66. [66]

    A. Datta and S. Niyogi, Entangled System of Squarks from the Third Generation at the Large Hadron Collider, arXiv:1111.0200 [INSPIRE].

  67. [67]

    A. Choudhury and A. Datta, Many faces of low mass neutralino dark matter in the unconstrained MSSM, LHC data and new signals, JHEP 06 (2012) 006 [arXiv:1203.4106] [INSPIRE].

    ADS  Article  Google Scholar 

  68. [68]

    S. Bhattacharya, S. Chakdar, K. Ghosh and S. Nandi, Non-universal SUGRA at LHC: Prospects and Discovery Potential, Phys. Rev. D 89 (2014) 015004 [arXiv:1309.0036] [INSPIRE].

    ADS  Google Scholar 

  69. [69]

    Planck collaboration, Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076] [INSPIRE].

    ADS  Article  Google Scholar 

  70. [70]

    K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].

    ADS  Google Scholar 

  71. [71]

    J. Edsjo and P. Gondolo, Neutralino relic density including coannihilations, Phys. Rev. D 56 (1997) 1879 [hep-ph/9704361] [INSPIRE].

    ADS  Google Scholar 

  72. [72]

    A. Choudhury and A. Datta, Neutralino dark matter confronted by the LHC constraints on Electroweak SUSY signals, JHEP 09 (2013) 119 [arXiv:1305.0928] [INSPIRE].

    ADS  Article  Google Scholar 

  73. [73]

    M. Chakraborti, U. Chattopadhyay, A. Choudhury, A. Datta and S. Poddar, The Electroweak Sector of the pMSSM in the Light of LHC - 8 TeV and Other Data, JHEP 07 (2014) 019 [arXiv:1404.4841] [INSPIRE].

    ADS  Article  Google Scholar 

  74. [74]

    A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: A Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  75. [75]

    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  76. [76]

    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  77. [77]

    ATLAS collaboration, Updated coupling measurements of the Higgs boson with the ATLAS detector using up to 25 fb −1 of proton-proton collision data, ATLAS-CONF-2014-009 (2014).

  78. [78]

    CMS collaboration, Precise determination of the mass of the Higgs boson and studies of the compatibility of its couplings with the standard model, CMS-PAS-HIG-14-009 (2014).

  79. [79]

    A. Djouadi, M.M. Muhlleitner and M. Spira, Decays of supersymmetric particles: The Program SUSY-HIT (SUspect-SdecaY-HDECAY-InTerface), Acta Phys. Polon. B 38 (2007) 635 [hep-ph/0609292] [INSPIRE].

    ADS  Google Scholar 

  80. [80]

    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 3 : A program for calculating dark matter observables, Comput. Phys. Commun. 185 (2014) 960 [arXiv:1305.0237] [INSPIRE].

    ADS  Article  Google Scholar 

  81. [81]

    LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].

    ADS  Article  Google Scholar 

  82. [82]

    ATLAS collaboration, Measurement of the b-tag Efficiency in a Sample of Jets Containing Muons with 5 fb −1 of Data from the ATLAS Detector, ATLAS-CONF-2012-043 (2012).

  83. [83]

    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    ADS  Article  Google Scholar 

  84. [84]

    W. Beenakker, R. Hopker, M. Spira and P.M. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [INSPIRE].

    ADS  Article  Google Scholar 

  85. [85]

    P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004 [arXiv:0802.0007] [INSPIRE].

    ADS  Google Scholar 

  86. [86]

    Muon G-2 collaboration, G.W. Bennett et al., Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].

    ADS  Google Scholar 

  87. [87]

    B.L. Roberts, Status of the Fermilab Muon (g − 2) Experiment, Chin. Phys. C 34 (2010) 741 [arXiv:1001.2898] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arghya Choudhury.

Additional information

ArXiv ePrint: 1411.6467

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, A., Choudhury, A., Datta, A. et al. Gluino mass limits with sbottom NLSP in coannihilation scenarios. J. High Energ. Phys. 2015, 154 (2015). https://doi.org/10.1007/JHEP01(2015)154

Download citation

Keywords

  • Supersymmetry Phenomenology