, Volume 28, Issue 6, pp 966–973 | Cite as

Diet and movement of the killifish,Fundulus heteroclitus, in a Maine salt marsh assessed using gut contents and stable isotope analyses

  • Kelton W. McMahonEmail author
  • Beverly J. Johnson
  • William G. Ambrose


Killifish are ecologically important components of salt marsh ecosystems, but no studies have determined the importance of locally produced versus allochthonous food sources on a scale of less than multiple kilometers. The goal of our study was to examine diet and movement of the killifish,Fundulus heteroclitus, collected from a Maine salt marsh to assess the importance of locally produced versus allochthonous food sources on a scale of several hundred meters. We compared the gut contents and stable isotope signatures ofF. heteroclitus from four regions along the central river of a Maine salt marsh to the distinct food sources and isotopic signatures of the region of the marsh in which they were caught.F. heteroclitus were relying on locally produced food sources even on the scale of several hundred meters. They fed daily in a small area less than 6 ha and maintained relatively strong site fidelities over the course of several months. Phytoplankton and salt marsh detritus both contributed to the high production ofF. heteroclitus; terrestrial plant detritus was not an important component of their diet. The diet and feeding patterns ofF. heteroclitus from this small Maine salt marsh were similar to the patterns found in much larger salt marshes, suggesting that locally produced organic matter is essential to the production of these ecologically important fish.


Salt Marsh Particulate Organic Carbon Stable Isotope Analysis Marsh Surface Salt Marsh Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Akpan, A. W. andI. A. Isangedighi. 2004. Aspects of the feeding ecology of three species ofPseudotolithus (Sciaenidae) in the inshore waters of Southeastern Nigeria, East of the Niger Delta, Nigeria.Journal of Aquatic Sciences 19:51–58.Google Scholar
  2. Allen, E. A., P. E. Fell, M. A. Peck, J. A. Gieg, C. R. Guthke, andM. D. Newrirk. 1994. Gut contents of common mummichogs,Fundulus heteroclitus L., in a restored impounded marsh and in natural reference marshes.Estuaries 17:462–471.CrossRefGoogle Scholar
  3. Baker-Dittus, A. M. 1978. Foraging patterns of three sympatric killifish.Copeia 1978:383–389.CrossRefGoogle Scholar
  4. Bartholomew, A. 2002. Total cover and cover quality: Predicted and actual effects on a predator’s foraging success.Marine Ecology Progress Series 227:1–9.CrossRefGoogle Scholar
  5. Bayne, B. L., A. J. S. Hawkins, andE. Navarro. 1987. Feeding and digestion by the musselMytilus edulis L. (Bivalvia: Mollusca) in mixtures of silt and algal cells at low concentrations.Journal of Experimental Marine Biology and Ecology 111:1–22.CrossRefGoogle Scholar
  6. Bouillon, S., N. Koedam, W. Bayens, B. Satyanarayana, andF. Dehairs. 2004. Selectivity of subtidal benthic invertebrate communities for local microalgal production in an estuarine mangrove ecosystem during the post-monsoon period.Journal of Sea Research 51:133–144.CrossRefGoogle Scholar
  7. Bouillon, S., P. C. Mohan, N. Sreenivas, andF. Dehairs. 2000. Sources of suspended organic matter and selective feeding by zooplankton in an estuarine mangrove ecosystem as traced by stable isotopes.Marine Ecology Progress Series 208:79–92.CrossRefGoogle Scholar
  8. Busby, M. S. 1995. Potential food sources and feeding ecology of juvenile fall Chinook salmon in California’s Mattole River Lagoon.California Fish and Game 81:133–146.Google Scholar
  9. Coffin, R. B., B. Fry, B. J. Peterson, andR. T. Wright. 1989. Carbon isotopic compositions of estuarine bacteria.Limnology and Oceanography 34:1305–1310.Google Scholar
  10. Crosby, M. P., C. J. Langdon, andR. I. E. Newell. 1989. Importance of refractory plant material to the carbon budget of the oysterCrassostrea virginica.Marine Biology 100:343–352.CrossRefGoogle Scholar
  11. Day, Jr.,J. W., C. A. S. Hall, M. W. Kemp, andA. Yanex-Arancibia. 1989. Estuarine Ecology. John Wiley and Sons, New York.Google Scholar
  12. de Vlaming, V. L., A. Kuris, andF. R. Parker, Jr. 1978. Seasonal variation of reproduction and lipid reserves in some subtropical cyprinodontids.Transactions of the American Fisheries Society 107:464–472.CrossRefGoogle Scholar
  13. Deegan, L. A., J. Finn, C. S. Hopkinson, A. E. Giblin, B. J. Peterson, B. Fry, andJ. Hobbie. 1995. Flow model analysis of the effects of organic matter-nutrient interactions on estuarine trophic dynamics, p. 273–281.In K. R. Dyer and R. J. Orth (eds.), Changes in Fluxes in Estuaries. Olsen and Olsen, Fredenborg, Denmark.Google Scholar
  14. Deegan, L. A. andR. H. Garritt. 1997. Evidence for spatial variability in estuarine food webs.Marine Ecology Progress Series 147:31–47.CrossRefGoogle Scholar
  15. DeNiro, M. J. andS. Epstein. 1977. Mechanisms of carbon isotope fractionation associated with lipid synthesis.Science 197:261–263.CrossRefGoogle Scholar
  16. DeNiro, M. J. andS. Epstein. 1978. Influence of the diet on the distribution of carbon isotopes in animals.Geochimica et Cosmochemica Acta 42:495–506.CrossRefGoogle Scholar
  17. DeNiro, M. J. andS. Epstein. 1981. Influence of the diet on the distribution of nitrogen isotopes in animals.Geochimica et Cosmochemica Acta 45:341–351.CrossRefGoogle Scholar
  18. Donnelly, J. P. andM. D. Bertness. 2001. Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise.Proceedings of the National Academy of Sciences of the United States of America 98:14218–14223.CrossRefGoogle Scholar
  19. Ewanchuk, P. J. andM. D. Bertness. 2003. Recovery of a northern New England salt marsh plant community from winter icing.Oecologia 136:616–626.CrossRefGoogle Scholar
  20. Fell, P. E., R. S. Warren, J. K. Light, R. Rawson, andS. M. Fairley. 2003. Comparison of fish and macroinvertebrate use ofTypha angustifolia, Phragmites australis, and treatedPhragmites marshes along the lower Connecticut River.Estuaries 26:535–552.Google Scholar
  21. Findlay, S., M. Pace, andD. Fischer. 1996. Spatial and temporal variability in the lower food web of the tidal freshwater Hudson River.Estuaries 19:866–873.CrossRefGoogle Scholar
  22. Fogel, M. L., L. A. Cifuentes, D. J. Velinsky, andJ. H. Sharp. 1992. Relationship of carbon availability in estuarine phytoplankton to isotopic composition.Marine Ecology Progress Series 82:291–300.CrossRefGoogle Scholar
  23. Fry, B., M. Hullar, B. J. Peterson, S. Saupe, andR. T. Wright, 1992. DOC production in a salt marsh estuary.Archiv fuer Hydrobiologie 37:1–8.Google Scholar
  24. Fry, B. andE. B. Sherr. 1984. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems.Contributions in Marine Science 27:13–47.Google Scholar
  25. Goranson, C. E., C.-K. Ho, andS. C. Pennings. 2004. Environmental gradients and herbivore feeding preferences in coastal salt marshes.Oecologia 140:591–600.CrossRefGoogle Scholar
  26. Griffin, M. P. A. andI. Valiela. 2001. δ15N isotope studies of life history and trophic position ofFundulus heteroclitus andMenidia menidia.Marine Ecology Progress Series 214:299–305.Google Scholar
  27. Gutierrez-Estrada, J. C., J. Prenda, F. Oliva, andC. Fernandez-Delgado. 1998. Distribution and habitat preferences of the introduced mummichogFundulus heteroclitus (Linneaus) in south-western Spain.Estuarine Coastl and Shelf Science 46:827–835.CrossRefGoogle Scholar
  28. Gutjahr-Gobell, R. E. 1998. Growth of juveniles and egg production of mummichogs fed different diets in the laboratory.Progressive Fish-Culturist 60:276–283.CrossRefGoogle Scholar
  29. Hbrek, T. andA. Meyer. 2003. Closing of the Tethys Sea and the phylogeny of Eurasian killifishes (Cyprinodontiformes: Cyprinodontidae).Journal of Evolutionary Biology 16:17–36.CrossRefGoogle Scholar
  30. Incze, L. S., L. M. Mayer, E. B. Sherr, andS. A. Macko. 1982. Carbon inputs to bivalve mollusks: A comparison of two estuaries.Canadian Journal of Fisheries and Aquatic Sciences 39:1348–1352.Google Scholar
  31. Johnson, B. J., K. A. Moore, C. Lehmann, C. Bohlen, and T. Brown. 2005. Middle to Late Holocene fluctuations of C3 and C4 vegetation in a northern New England salt marsh, Sprague Marsh, Phippsburg Maine.Organic Geochemistry. In press.Google Scholar
  32. Keller, P. D., S. Kelly, andB. Sullivan. 1990. Growth of juvenile Atlantic menhaden,Brevoorita tyranus in MERL mesocosms: Effects of eutrophication.Limnology and Oceanography 35:109–122.Google Scholar
  33. Kneib, R. T. 1986. The role ofFundulus heteroclitus in salt marsh trophic dynamics.American Zoologist 26:259–269.Google Scholar
  34. Kneib, R. T. 2000. Salt marsh ecoscapes and production transfers by estuarine nekton in the southeastern United States, p. 267–292.In M. P. Weinstein and D. A. Kreeger (eds.), Concepts and controversies in Tidal Marsh Ecology. Kluwer Academic Publishers, Dordrecht, Holland.Google Scholar
  35. Kneib, R. T. andA. E. Stiven. 1978. Growth, reproduction and feeding ofFundulus heteroclitus on a North Carolina salt marsh.Journal of Experimental Marine Biology and Ecology 31:121–140.CrossRefGoogle Scholar
  36. Lotrich, V. A. 1975. Summer home range and movements ofFundulus heteroclitus (Pices: cyprinodontidae) in a tidal creek.Ecology 56:191–198.CrossRefGoogle Scholar
  37. Mallin, M. andH. Paerl. 1994. Planktonic trophic transfer in an estuary: Seasonal diel and community effects.Ecology 75:2168–2184.CrossRefGoogle Scholar
  38. Mann, K. H. 1988. Production and use of detritus in various freshwater, estuarine, and coastal marine ecosystems.Limnology and Oceanography 33:910–930.CrossRefGoogle Scholar
  39. Meyers, P. A. 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter.Chemical Geology 114:289–302.CrossRefGoogle Scholar
  40. Muylaert, K. andR. Raine. 1999. Import, mortality and accumulation of coastal phytoplankton in a partially mixed estuary (Kinsale Harbour, Ireland).Hydrobiologia 412:53–65.CrossRefGoogle Scholar
  41. Newell, R. I. E. andC. J. Langdon. 1986. Digestion and absorption of refractory carbon from the plantSpartina alterniflora by the oysterCrassostrea virginica.Marine Ecology Progress Series 34:105–115.CrossRefGoogle Scholar
  42. Nixon, S. W., C. A. Oviatt, J. Frithsen, andB. Sullivan. 1986. Nutrients and the productivity of estuarine and coastal marine ecosystems.Journal of the Limnological Society of Southern Africa 12:43–71.Google Scholar
  43. Peterson, B. J. 1999. Stable isotopes as tracers of organic matter input and transfer in benthic food webs: A review.Acta Oecologica 20:479–487.CrossRefGoogle Scholar
  44. Peterson, B. J., B. Fry, M. Hullar, S. Saupe, andR. Wright. 1994. The distribution and stable carbon isotopic compositions of dissolved organic carbon in estuaries.Estuaries 17:111–121.CrossRefGoogle Scholar
  45. Peterson, B. J., R. W. Howarth, andR. W. Garritt. 1986. Sulfur and carbon isotopes as tracers of salt-marsh organic matter flow.Ecology 67:865–874.CrossRefGoogle Scholar
  46. Peterson, B. J. andR. W. Howarth. 1987. Sulfur, carbon, and nitrogen isotopes used to trace organic matter flow in the salt marshes estuaries of Sapelo Island, Georgia.Limnology and Oceanography 32:1195–1213.Google Scholar
  47. Prinslow, T. E., J. Valiela, andJ. M. Teal. 1974. The effect of detritus and ration size on the growth ofFundulus heteroclitus.Journal of Experimental Marine Biology and Ecology 16:1–10.CrossRefGoogle Scholar
  48. Rau, G. H., A. J. Mearns, D. R. Young, R. J. Olson, H. A. Schafer, andI. R. Kaplan. 1983. Animal13C/12C correlates with trophic level in pelagic food webs.Ecology 64:1314–1318.CrossRefGoogle Scholar
  49. Riera, P. L., J. Stal, J. Nieuwenhuize, P. Richard, G. Blanchard, andF. Gentil. 1999. Determination of food sources for benthic invertebrates in a salt marsh (Aiguillon Bay, France) by carbon and nitrogen isotopes: Importance of locally produced sources.Marine Ecology Progress Series 187:301–307.CrossRefGoogle Scholar
  50. Simenstad, C. A. andR. C. Wissmar. 1985. δ13C evidence of the origins and fates of organic carbon in estuarine and nearshore food webs.Marine Ecology Progress Series 22:141–152.CrossRefGoogle Scholar
  51. Teal, J. M. 1962. Energy flow in the salt marsh ecosystem of Georgia.Estuaries 43:614–624.Google Scholar
  52. Tenore, K. R. 1983. What controls the availability to animals of detritus derived from vascular plants: Organic nitrogen enrichment or caloric availability?Marine Ecology Progress Series 10:307–309.CrossRefGoogle Scholar
  53. Teo, S. L. H. andK. W. Able. 2003. Habitat use and movement of the mummichog (Fundulus heteroclitus) in a restored salt marsh.Estuaries 26:720–730.CrossRefGoogle Scholar
  54. Valiela, I., J. E. Wright, J. M. Teal, andS. B. Volkmann 1977. Growth, production, and energy transformations in the salt marsh killifishFundulus heteroclitus.Marine Biology 40:135–144.CrossRefGoogle Scholar
  55. Weisberg, S. B., R. R. Whalen, andV. A. Lotrich. 1981. Tidal and diurnal influence on food consumption of a salt marsh killifish.Fundulus heteroclitus.Marine Biology 61:243–246.CrossRefGoogle Scholar

Copyright information

© Estuarine Research Federation 2005

Authors and Affiliations

  • Kelton W. McMahon
    • 1
    Email author
  • Beverly J. Johnson
    • 2
  • William G. Ambrose
    • 1
  1. 1.Department of BiologyBates CollegeLewiston
  2. 2.Department of GeologyBates CollegeLewiston

Personalised recommendations