Skip to main content
Log in

The toxicity of waterborne boron toDaphnia magna andChironomus decorus and the effects of water hardness and sulfate on boron toxicity

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The concentrations of many elements, including boron, are increasing in aquatic ecosystems due to anthropogenic activities. Laboratory studies were undertaken to evaluate the toxicity of waterborne boron to two key fresh water macroinvertebrates and to evaluate the effects of water hardness and sulfate on boron toxicity. Acute toxicity evaluations of waterborne sodium tetraborate resulted in 48 h. LC50 values of 141 and 1376 mg B/L for neonateDaphnia magna and fourth instarChironomus decorus, respectively. Chronic sublethal studies demonstrated a significant decrease inC. decorus growth rate at 20 mg B/L. Further studies showed that increasing water hardness (10.6 to 170 mg/L as CaCO3) and sulfate (10.2 to 325.4 mg SO4 −1/L) concentrations did not affect boron toxicity toD. magna. These results, in conjunction with a review of the literature, suggest that aquatic macrophytes may be more sensitive to boron than macroinvertebrates and thus would be better choices for aquatic risk assessment evaluations for this element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Birge WJ, Black JA (1977) Sensitivity of vertebrate embryos to boron compounds. EPA-560/1-76-008. Office of Toxic Substances, US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Bringmann G (1978) Determining the harmful effect of water pollutants on protozoa. 1. Bacterivorous flagellates. Z Wasser Abwasser Forsch 11:210–215

    Google Scholar 

  • Butterwick L, De Oude N, Raymond K (1989) Safety assessment of boron in aquatic and terrestrial environments. Ecotoxicol Environ Safety 17:339–371

    PubMed  Google Scholar 

  • Fay RW (1959) Toxic effects of boron trioxide against immature stages ofAedes aegypti, Anopheles quadrimaculatus andCulex quinquefasciatus. J Econ Entomol 52:1027–1028

    Google Scholar 

  • Frick H (1985) Boron tolerance and accumulation in the duckweed,Lemna minor. J Plant Nut 8(12): 1123–1129

    Google Scholar 

  • Gersich FM (1984) Evaluation of a static renewal chronic toxicity test method forDaphnia magna Straus using boric acid. Environ Toxicol Chem 3:89–94

    Google Scholar 

  • Hem JD (1970) Study and interpretation of the chemical characteristics of natural water. 2nd ed. Geological Survey Suppl. Paper 1473. US Geological Survey

  • Ingri N (1963) Equilibrium studies of polyanions containing BIII, SiIV, GeIV, and VV. Svensk Kem Tidskr 75:3–34

    Google Scholar 

  • Landauer W (1952) Genetic and environmental factors in the teratogenic effects of boric acid on chicken embryos. Genetics 38: 216–228

    Google Scholar 

  • Laws EA (1981) Aquatic Pollution. John Wiley and Sons, NY

    Google Scholar 

  • LeClerc E, Devlaminck F (1955) Fish toxicity tests and water quality. Bull de Belge Condument Eaux 28:11

    Google Scholar 

  • Lewis MA, Valentine LC (1981) Acute and chronic toxicities of boric acid toDaphnia magna Straus. Bull Environ Contam Toxicol 27:309–315

    PubMed  Google Scholar 

  • Martinez F, Mateo P, Bonilla I, Fernandez-Valiente E (1986) Cellular changes due to boron toxicity in the blue-green algaAnacystis nidulans. Phyton 46(2):145–152

    Google Scholar 

  • Matheson R, Hinman EH (1928) A new iarvicide for mosquitos. Amer J Hyg 8:293–296

    Google Scholar 

  • McBride J, Chorney W, Skok J (1971) Growth ofChlorella in relation to boron supply. Bot Gaz 132(1): 10–13

    Google Scholar 

  • McKee JE, Wolf HW (1963) Water Quality Criteria. 2nd ed. California State Water Resources Control Board. Publ. No. 3-A. Sacramento, CA

  • Nobel W (1981) Zum Einfluβ von Bor auf submerse WeichwasserMakrophyten. Angew Botanik 55:501–514

    Google Scholar 

  • Nobel W, Mayer T, Kohler A (1983) Submerse Wasserpflanzen als Testorganismen fur Belasrungsstoffe. Z Wasser Abwasser Forsch 16(3):87–90

    Google Scholar 

  • Ohlendorf HM, Hoffman DJ, Saiki MK, Aldrich TW (1986) Embryonic mortality and abnormalities of aquatic birds: Apparent impacts of selenium from irrigation drainwater. Sci Total Environ 52:49–63

    Google Scholar 

  • Pilbeam DJ, Kirkby EA (1983) The physiological role of boron in plants. J Plant Nutri 6:563–582

    Google Scholar 

  • Saiki MK, May TW (1988) Trace element residues in bluegills and common carp from the lower San Joaquin River, California, and its tributaries. Sci Total Environ 74:199–217

    PubMed  Google Scholar 

  • Sanchez E, Mateo P, Fernandez E, Bonilla I, Ortega P (1982) Comportamiento deChlorella pyrenoidosa trente a distintas concentraciones de boro en el medio. Anal Edaf Agrobiol 41:2357–2362

    Google Scholar 

  • SAS Inc (1985) SAS User's Guide: Statistics. Version 5. SAS Institute Inc. Cary, NC

    Google Scholar 

  • Shkol'Nik MYA (1984) The physiological role of trace elements: Boron. In: Shkol'Nik MYA (ed) Trace Elements in Plants. Elsevier, Amsterdam, pp 68–109

    Google Scholar 

  • Smith GJ, Anders VP (1989) Toxic effects of boron on mallard reproduction. Environ Contam Toxicol 8:943–950

    Google Scholar 

  • Standard Methods (1985) Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC

    Google Scholar 

  • Stanley RA (1974) Toxicity of heavy metals and salts to the Eurasian watermill (Myriophyllum spicatuma). Arch Environ Contam Toxicol 2:331–341

    PubMed  Google Scholar 

  • US Environmental Protection Agency (USEPA) (1972) Water quality criteria. EPA-R3-73-033. Washington, DC

  • - - -(1975) Methods for acute toxicity tests with fish, macroinvertebrates and amphibians. EPA-660/3-75-009. Corvallis, OR

  • Wang W (1986) Toxicity tests of aquatic pollutants by using common duckweed. Environ Pollut Ser B 11:1–14

    Google Scholar 

  • Warren CE (1971) Biology and Water Pollution Control. WB Saunders Co, Philadelphia

    Google Scholar 

  • Wren CD, Maccrimmon HR, Loescher BR (1983) Examination of bioaccumulation and biomagnification of metals in a precambrian shield lake. Water Air Soil Pollut 19:277–291

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maier, K.J., Knight, A.W. The toxicity of waterborne boron toDaphnia magna andChironomus decorus and the effects of water hardness and sulfate on boron toxicity. Arch. Environ. Contam. Toxicol. 20, 282–287 (1991). https://doi.org/10.1007/BF01055917

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01055917

Keywords

Navigation