Skip to main content
Log in

Structural and Electronic Properties of Flexible ZnO and Ti/Mn:ZnO Thin Films

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Thin films of ZnO, Ti doped ZnO and Mn doped ZnO were prepared on flexible polyimide substrates by means of the RF sputtering technique for different sputtering parameters, and their structural and electronic properties were investigated. Grazing incidence X-ray diffraction (GI-XRD) results confirmed that the grown samples followed the hexagonal wurtzite symmetry. The lattice parameters and the crystallite size showed a dependence on doping as well as deposition condition. The presence of oxygen during sputtering growth significantly suppressed the crystallite size and increased the number of oxygen defect states. The effect of doping and the deposition parameters on the electronic structure of flexible ZnO thin films was also realized through X-ray absorption measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Bhati, M. Hojamberdiev and M. Kumar, Energy Rep. 6, 46 (2020).

    Article  Google Scholar 

  2. M. Kumar, S. Rani and H. H. Lee, J. Korean Phys. Soc. 75, 519 (2019).

    Article  ADS  Google Scholar 

  3. T. B. Foong et al., J. Mater. Chem. 22, 20896 (2012).

    Article  Google Scholar 

  4. R. Singh et al., ACS Appl. Mater. Interfaces 11, 36905 (2019).

    Article  Google Scholar 

  5. G. P. Kini, S. R. Suranagi, M. Kumar and R. Singh, Dyes Pigm. 175, 108083 (2020).

    Article  Google Scholar 

  6. P. Ilanchezhiyan et al., Sol. Energy Mater. Sol. Cells 183, 73 (2018).

    Article  Google Scholar 

  7. M. Moret et al., Superlattices Microstruct. 75, 477 (2014).

    Article  ADS  Google Scholar 

  8. R. Kumar, G. Kumar, O. Al-Dossary and A. Umar, Mater. Express 5, 1 (2015).

    Article  Google Scholar 

  9. V. Devi et al., J. Phys. D: Appl. Phys. 48, 335103 (2015).

    Article  Google Scholar 

  10. V. Devi et al., J. Appl. Phys. 117, 225305 (2015).

    Article  ADS  Google Scholar 

  11. M. Vagadia et al., J. Alloys Compd. 610, 113 (2014).

    Article  Google Scholar 

  12. M. Kumar et al., J. Alloys Compd. 759, 8 (2018).

    Article  Google Scholar 

  13. V. Devi, M. Kumar, R. J. Choudhary and B. C. Joshi, AIP Conf. Proc. 1661, 110006 (2015).

    Article  Google Scholar 

  14. V. Devi et al., AIP Conf. Proc. 1665, 080065 (2015).

    Article  Google Scholar 

  15. V. Devi, M. Kumar, R. Kumar and B. C. Joshi, Ceram. Int. 41, 6269 (2015).

    Article  Google Scholar 

  16. S. J. Pearton et al., IEEE Trans. Electron Devices 54, 1040 (2007).

    Article  ADS  Google Scholar 

  17. R. D. Shannon, Acta Crystallogr. A32, 751 (1976).

    Article  ADS  Google Scholar 

  18. R. L. Hoffman, B. J. Norris and J. F. Wager, Appl. Phys. Lett. 82, 733 (2003).

    Article  ADS  Google Scholar 

  19. H. H. Lee, M. Kumar and H-J. Shin, Phys. Adv. Technol. 26, 7 (2017).

    Google Scholar 

  20. B. D. Cullity and S. R. Stock, Elements of X-ray Diffraction, 3rd ed. (Prentice Hall, New Jersey, 2001).

    Google Scholar 

  21. A. L. Patterson, Phys. Rev. 56, 978 (1939).

    Article  ADS  Google Scholar 

  22. M. L. Baker et al., Coord. Chem. Rev. 345, 182 (2017).

    Article  Google Scholar 

  23. M. Kumar, R. J. Choudhary, D. K. Shukla and D. M. Phase, J. Appl. Phys. 115, 163904 (2014).

    Article  ADS  Google Scholar 

  24. M. Kumar et al., Superlattices Microstruct. 137, 106335 (2020).

    Article  Google Scholar 

  25. O. M. Ozkendir, S. Yildirimcan, A. Yuzer and K. Ocakoglu, Prog. Nat. Sci. 26, 347 (2016).

    Article  Google Scholar 

  26. P. Thakur et al., J. Korean Phys. Soc. 53, 2821 (2008).

    Article  ADS  Google Scholar 

  27. A. K. Yadav et al., AIPAdv. 5, 117138 (2015).

    ADS  Google Scholar 

  28. P. Thakur et al., J. Korean Phys. Soc. 55, 177 (2009).

    Article  ADS  Google Scholar 

  29. V. Devi et al., Superlattices Microstruct. 83, 431 (2015).

    Article  ADS  Google Scholar 

  30. M. Yuste et al., J. Phys. D: Appl. Phys. 45, 025303 (2012).

    Article  ADS  Google Scholar 

  31. P. Thakur and K. H. Chae, Appl. Phys. Lett. 91, 162503 (2007).

    Article  ADS  Google Scholar 

  32. A. P. Singh et al., J. Phys.: Condens. Matter 21, 185005 (2009).

    ADS  Google Scholar 

Download references

Acknowledgments

This work was supported through the “Global collaborative R&D program” (No. N0002095) of the Korea Institute for Advancement of Technology (KIAT) grant and also by National Research Foundation of Korea (NRF) grant (Grant No. NRF-2015R1A5A1009962) funded by the Korean government.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manish Kumar or Hyun Hwi Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Singh, J.P., Lee, H.H. et al. Structural and Electronic Properties of Flexible ZnO and Ti/Mn:ZnO Thin Films. J. Korean Phys. Soc. 77, 452–456 (2020). https://doi.org/10.3938/jkps.77.452

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.77.452

Keywords

Navigation