Skip to main content
Log in

Structure Analysis and Optical Parameters of Nano-scale ZnSe/Flexible Substrate Thin Film

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The ZnSe thin films with different thicknesses have been deposited on polymer substrates for flexible optical devices applications. The XRD of different thicknesses for ZnSe films reveals the cubic structure of the films oriented along the (1 1 1) direction. The structural parameters such as particle size (40.41–105.24 nm) and lattice strain (6.5 × 10−3–14.7 × 10−3 lin−2m−4) were evaluated. Also AFM was used in order to obtain quantitative information on microstructure properties. The optical constants, the refractive index n and the absorption index k have been calculated from transmittance T and reflectance R through the spectral range of 400–2500 nm using Swanepoel’s method. The optical constants (n, k) were calculated in medium and transparent regions. The energy gap of direct transition for polycrystalline ZnSe thin films was calculated in the strong absorption region and found to be increased from 2.55 eV to 2.70 eV with the increasing the film thickness. ZnSe/flexible substrates are good candidates for optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Riveros, H. Gomez, R. Henriguez, R. Schrebler, R.E. Maratti, and E.A. Dalchiele, Sol. Energy Mater. Sol. Cells 70, 255 (2001).

    Article  Google Scholar 

  2. V. Kumar and T. P. Sharma, Opt. Mater. 10, 253 (1998).

  3. L. Ting Chu and S.C. Shirley, Solid-State Electron. 38, 533 (1995).

    Article  Google Scholar 

  4. E.R. Shaaban, I.S. Yahia, and M.F. J. Alloys Compound. 469, 427 (2009).

  5. L.M. Caicedo, G. Cediel, A. Dussan, J.W. Sandino, C. Calderon, and G. Gordillo, Phys. Status Solidi B 220, 249 (2000).

    Article  Google Scholar 

  6. B. Su and K. L. Choy, Thin Solid Films 102, 361 (2000).

  7. S. Taniguchi, T. Hino, S. Itoh, K. Nakano, N. Nakayama, A. Ishibashi, and M. Ikeda, Elect Lett. 32, 522 (1996).

  8. S. Armstrong, P.K. Datta, and R.W. Mile, Thin Solid Films 403, 126 (2002).

    Article  Google Scholar 

  9. E. Loh and R. Newman, J. Phys. Chem. Solids 21, 324 (1961).

    Article  Google Scholar 

  10. R.E. Halsted and M. Aven, Bull. Am. Phys. Soc. 6, 312 (1961).

    Google Scholar 

  11. D.J. Flood and W. Irving, NASA Technical Memorandum 106777, National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio, November 1994.

  12. J.C. McClure, V.P. Singh, G.B. Lush, E. Clark, and G. Thompson, Sol. Energy Mater. Sol. Cells 55, 141 (1998).

  13. G. Cui, D. Wu, S. Qi, S. Jin, Z. Wu, and R. Jin, Appl. Mater. Interfaces 3, 789 (2011).

  14. K. Kamide and M. Saito, Polymer J. 17, 19 (1985).

    Google Scholar 

  15. R. Swanepoel, J. Phys. E: Sci. Instrum. 17, 896 (1984).

    Article  Google Scholar 

  16. B.D. Cullity, Elements of X-Ray Diffraction, 2nd ed. (London: Addition-Wesley, 1978).

    Google Scholar 

  17. E.R. Shaaban, I. Kansal, S.H. Mohamed, J.M.F. Ferreira, and E.R. Shaaban, Phys. B: Condensed Matter 404, 3571 (2009).

    Article  Google Scholar 

  18. E.R. Shaaban, I.S. Yahia, N. Afify, G.F. Salem, and W. Dobrowolski, Mater. Sci. Semiconductor Process. 19, 107 (2014).

  19. E.R. Shaaban, Philos. Mag. 88, 781 (2008).

    Article  Google Scholar 

  20. E.R. Shaaban, Mat. Chem. Phys. 100, 411 (2006).

    Article  Google Scholar 

  21. E. Márquez, J.M. González-Leal, A.M. Bernal-Oliva, R. Jiménez-Garay, and T. Wagner, J. Non-Crystal. Solids 354, 503 (2008).

    Article  Google Scholar 

  22. E.R. Shaaban, M.A. Kaid, E.S. Moustafa, and A. Adel, J. Phys. D: Appl. Phys. 41, 125301 (2008).

  23. F.A. Jenkins and H. E. White, Fundamentals of Optics, 3rd ed. (McGraw-Hill, New York, 1957) p.496.

  24. L.E. Brus, J. Chem. Phys. 80, 4403 (1984).

    Article  Google Scholar 

  25. E.R. Shaaban, Philos. Mag. 88, 781 (2008).

    Article  Google Scholar 

  26. M. Nowak, Thin Solid Films 266, 258 (1995).

    Article  Google Scholar 

  27. E.A. Davis and N.F. Mott, Philos. Mag. 22, 903 (1970).

    Article  Google Scholar 

  28. M. Kastner, Phys. Rev. Lett. 28, 355 (1972).

    Article  Google Scholar 

  29. M.A. Mohammed, J. Tech. Eng. 27, 1174 (2009).

  30. F. Chowdhury, J. Electron Devices 10, 448 (2011).

  31. N. Revathi, P. Prathap, and K.T.R. Reddy, Solid State Sci. 11, 1288 (2009).

  32. E.R. Shaaban, N. Afify, and A. El-Taher, J. Alloys Compd. 482, 400 (2009).

    Article  Google Scholar 

  33. J.I. Pankove, Optical Processes in Semiconductors (New York: Dover, 1971), p. 44.

    Google Scholar 

  34. M. Öztas and M. Bedir, Thin Solid Films 516, 1703 (2008).

    Article  Google Scholar 

  35. S.K. Biswas, S. Chaudhuri, and A. Choudhury, Phys. Status. Solidi (A) 105, 467 (1988).

    Article  Google Scholar 

  36. K.I. Arshak and C. Ahogarth, Thin Solid Films 137, 281 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. R. Shaaban.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaaban, E.R., Yahia, I.S. & Sharaf, E.R. Structure Analysis and Optical Parameters of Nano-scale ZnSe/Flexible Substrate Thin Film. J. Electron. Mater. 46, 527–534 (2017). https://doi.org/10.1007/s11664-016-4926-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4926-2

Keywords

Navigation