Skip to main content
Log in

Influence of Coupling Strength Between a Magnetic Quantum Dot and Quantum Hall Edge Channels on Valley-isospin-dependent Dirac Fermion Transport

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We investigate Dirac fermion transport through opposite quantum Hall edge channels in armchair graphene nanoribbons where a magnetic quantum dot (MQD) is placed between the edges. The resulting conductance shows distinguished resonant features according to the angle Φ between the valley isospins at the opposite edges. Particularly, for Φ = 0, the conductance exhibits a behavior characteristic of dissipative resonances when the edge—dot distance is sufficiently small even though the unitarity of the whole system is conserved. As the edge—dot distance increases, a crossover behavior emerges between two distinct regimes: largely perturbed and unperturbed MQD. Resonant energy converges to a specific energy corresponding to the eigenenergy of the localized states in the unperturbed MQD. For sufficiently weak couplings, a fine splitting of the conductance resonances is observed, of which splitting energy is several μeV. The finding of these finely split localized states in the MQD allows us to better elucidate related electronic and transport properties in graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. W. J. Beenakker, Phys. Rev. B 44, 1646 (1991).

    Article  ADS  Google Scholar 

  2. S. Sasaki et al., Nature (London) 405, 764 (2000).

    Article  ADS  Google Scholar 

  3. F. Simmel et al., Phys. Rev. Lett. 83 804 (1999).

    Article  ADS  Google Scholar 

  4. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  ADS  Google Scholar 

  5. P. J. Zomer, S. P. Dash, N. Tombros and B. J. van Wees, Appl. Phys. Lett. 99, 232104 (2012).

    Article  ADS  Google Scholar 

  6. J. H. Bardarson, M. Titov and P. W. Brouwer, Phys. Rev. Lett. 102, 226803 (2009).

    Article  ADS  Google Scholar 

  7. J. Lee et al., Nat. Phys. 12, 1032 (2016).

    Article  Google Scholar 

  8. C. W. J. Beenakker, Rev. Mod. Phys. 80, 1337 (2008).

    Article  ADS  Google Scholar 

  9. N. Stander, B. Huard and D. Goldharber-Gordon, Phys. Rev. Lett. 102, 026807 (2009).

    Article  ADS  Google Scholar 

  10. A. De Martino, L. Dell’Anna and R. Egger, Phys. Rev. Lett. 98, 066802 (2007).

    Article  ADS  Google Scholar 

  11. N. Myoung et al., Phys. Rev. B 100, 045427 (2019).

    Article  ADS  Google Scholar 

  12. S. Schenz, K. Ensslin, M. Sigrist and T. Ihn, Phys. Rev. B 78, 195427 (2008).

    Article  ADS  Google Scholar 

  13. P. Recher, J. Nilsson, G. Burkard and B. Trauzettel, Phys. Rev. B 79, 085407 (2008).

    Article  ADS  Google Scholar 

  14. G. Gievaras, P. A. Maksym and M. Roy, J. Phys. Condens. Matter 21, 102201 (2009).

    Article  ADS  Google Scholar 

  15. C. Gutierrez et al., Science 361, 789 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  16. J. Tworzydlo, I. Snyman, A. R. Akhmerov and C. W. J. Beenakker, Phys. Rev. B 76, 035411 (2007).

    Article  ADS  Google Scholar 

  17. M. L. Ladrón de Guevara, F. Claro and P. A. Orellana, Phys. Rev. B 67, 195335 (2003).

    Article  ADS  Google Scholar 

  18. C. W. Groth, M. Wimmer, A. R. Akhmerov and X. Waintal, New J. Phys. 16, 063065 (2014).

    Article  ADS  Google Scholar 

  19. Y-W. Son, M. L. Cohen and S. G. Louie, Phys. Rev. Lett. 97, 216803 (2006).

    Article  ADS  Google Scholar 

  20. L. Brey and H. A. Fertig, Phys. Rev. B 73, 235411 (2006).

    Article  ADS  Google Scholar 

  21. C. Handschin et al., Nano Lett. 17, 5389 (2017).

    Article  ADS  Google Scholar 

  22. L. Trifunovic and P. W. Brouwer, Phys. Rev. B 99, 205431 (2019).

    Article  ADS  Google Scholar 

  23. M. I. Katsnelson, Graphene: Carbon in Two Dimensions (Cambridge University Press, London, 2012).

    Book  Google Scholar 

  24. M. Grujić et al., Phys. Rev. B 84, 205441 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by Chosun University (2018). The authors thank J. Rasmussen for his fruitful discussion regarding English of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nojoon Myoung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, J., Son, M. & Myoung, N. Influence of Coupling Strength Between a Magnetic Quantum Dot and Quantum Hall Edge Channels on Valley-isospin-dependent Dirac Fermion Transport. J. Korean Phys. Soc. 76, 318–322 (2020). https://doi.org/10.3938/jkps.76.318

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.76.318

Keywords

Navigation