Skip to main content
Log in

Simulations in a Spiking Neural Network Model Based on the Free Energy Principle

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The Feynman machine is a neural network model in which the spike-timing-dependent firing process is described through a path integral formulation. In addition, the gradient descent in the free energy is proposed as an ideal learning rule of the model system. The unique formulation of the Feynman machine is useful for studying the substance of the firing and the learning process in a spiking neural network; however, the implementation of the Feynman machine is not a plan problem because of the difficulty in calculating the free energy. We here introduce how to perform the simulation of both the firing and the learning processes in the Feynman machine through the Monte Carlo or the numerical integral method. We demonstrate the adequacy of the methods by applying them to the firing and the learning processes in some neural systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Dayan and L. F. Abbott, Theoretical Neuroscience (MIT Press, London, 2001).

    MATH  Google Scholar 

  2. W. Gerstner, R. Kempter, J. L. van Hemmen and H. Wagner, Nature 383, 761 (1996).

    Article  Google Scholar 

  3. H. Markram, J. Lübke, M. Frotscher and B. Sakamann, Science 275, 213 (1997).

    Article  Google Scholar 

  4. G-Q. Bi and M-M. Poo, J. Neurosci. 18, 10464 (1998).

    Article  Google Scholar 

  5. L. F. Abbott and S. B. Nelson, Nature Neurosci. 3, 1178 (2000).

    Article  Google Scholar 

  6. S. Song, K. D. Miller and L. F. Abbott, Nat. Neurosci. 3, 919 (2000).

    Article  Google Scholar 

  7. S. Song, S. and L. F. Abbott, Neuron 32, 339 (2001).

  8. M. W. Cho, J. Korean Phys. Soc. 64, 1213 (2014).

    Article  ADS  Google Scholar 

  9. W. Gerstner and W. M. Kistler, Spiking Neuron Models (Cambridge Universe Press, Cambridge, 2002).

    Book  MATH  Google Scholar 

  10. M. W. Cho and M. Y. Choi, Europhys. Lett. 115, 38001 (2016).

    Article  ADS  Google Scholar 

  11. M. W. Cho, J. Korean Phys. Soc. 71, 222 (2017).

    Article  ADS  Google Scholar 

  12. M. W. Cho, J. Korean Phys. Soc. 74, 63 (2019).

    Article  ADS  Google Scholar 

  13. M. W. Cho, J. Korean Phys. Soc. 73, 1385 (2018).

    Article  ADS  Google Scholar 

  14. R. B. Stein, Biophys. J. 7, 37 (1967).

    Article  ADS  Google Scholar 

  15. M. W. Cho, New Phys.: Sae Mulli 67, 862 (2017).

    Google Scholar 

  16. G. M. Torrie and J. P. Valeau, J. Comput. Phys. 23, 187 (1977).

    Article  ADS  Google Scholar 

  17. D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, Cambridge, 2000).

    MATH  Google Scholar 

  18. E. J. Chichilnisky, Network Comp. Neural. 12, 199 (2000).

    Article  Google Scholar 

  19. O. Schwartz, J. W. Pillow, N. C. Rust and E. P. Simoncelli, J. Vision 6, 484 (2006).

    Article  Google Scholar 

  20. M.-H. Park and S. Kim, J. Korean Phys. Soc. 29, 9 (1996).

    Google Scholar 

  21. M. W. Cho and M. Y. Choi, Phys. Rev. Lett. 98, 208102 (2007).

    Article  ADS  Google Scholar 

  22. M. W. Cho, New Phys.: Sae Mulli 66, 786 (2016).

    Google Scholar 

  23. M. W. Cho and M. Y. Choi, Neural Networks 49, 51 (2014).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Sungshin Women’s University Research Grant of 2017-1-21-007/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myoung Won Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, M.W. Simulations in a Spiking Neural Network Model Based on the Free Energy Principle. J. Korean Phys. Soc. 75, 261–270 (2019). https://doi.org/10.3938/jkps.75.261

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.75.261

Keywords

Navigation