Skip to main content
Log in

Supervised learning in a spiking neural network

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We introduce a method to train a bio-inspired neural network model, having the characteristics of spiking-timing-dependent interaction and learning, in a manner of supervised learning. We assume the spiking neural network model has the tendency to obey the charge conservation principle or the junction rule on a long (or the learning dynamics) time scale. The tendency makes the distribution of connectivities is determined depending on not only the incoming stimuli to input neurons but also the outgoing stimuli from output neurons as if a solution of the finite elementary method in a fluid system. We apply the learning method to several cases in simulations and find the adoption of the conservation principle exerts desired effects on the neural network learning. Finally, we discuss the significance and the drawbacks of the introduced method and compare it with the supervised learning method implemented by the artificial neural network model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. I. Goodfellow, Y. Bengio, A. Couville, Y. Bengio, Deep Learning (MIT Press, Cambridge, 2016)

    MATH  Google Scholar 

  2. W. Gerstner, W.M. Kistler, R. Naud, Neuronal Dynamics (Cambridge University Press, New York, 2014)

    Book  Google Scholar 

  3. J.H.R. Maunsell et al., Vis. Neurosci. 16, 1 (1999)

    Article  Google Scholar 

  4. K.-M. Lee, E.L. Keller, J. Neurosci. 28, 2242 (2008)

    Article  Google Scholar 

  5. H. Markram, J. Lubke, M. Frotscher, B. Sakamann, Science 275, 213 (1997)

    Article  Google Scholar 

  6. L. Zhang, H. Tao, C. Holt, W. Harris, M.-M. Poo, Nature 95, 37 (1998)

    Article  ADS  Google Scholar 

  7. G.-Q. Bi, M.-M. Poo, J. Neurosci. 18, 10464 (1998)

    Article  Google Scholar 

  8. L.F. Abbott, S.B. Nelson, Nat. Neurosci. 3, 1178 (2000)

    Article  Google Scholar 

  9. M.W. Cho, M.W. Choi, Europhys. Lett. 115, 38001 (2016)

    Article  ADS  Google Scholar 

  10. M.W. Cho, J. Korean Phys. Soc. 71, 222 (2017)

    Article  ADS  Google Scholar 

  11. J.J. Hopfield, Proc. Natl. Acad. Sci. USA 79, 2554 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  12. D.H. Ackley, G. Hinton, T. Sejnowski, Cogn. Sci. 9, 147 (1985)

    Article  Google Scholar 

  13. M.W. Cho, J. Korean Phys. Soc. 73, 1385 (2018)

    Article  ADS  Google Scholar 

  14. M.W. Cho, M.Y. Choi, J. Korean Phys. Soc. 77, 168 (2020)

    Article  ADS  Google Scholar 

  15. M.W. Cho, J. Korean Phys. Soc. 75, 261 (2019)

    Article  ADS  Google Scholar 

  16. M.W. Cho, New Phys. Sae Mulli 65, 456 (2015)

    Article  Google Scholar 

  17. M.W. Cho, New Phys. Sae Mulli 66, 786 (2016)

    Article  Google Scholar 

  18. M.W. Cho, New Phys. Sae Mulli 69, 874 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Sungshin Women’s University Research Grant of 2018-2-82-013/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myoung Won Cho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, M.W. Supervised learning in a spiking neural network. J. Korean Phys. Soc. 79, 328–335 (2021). https://doi.org/10.1007/s40042-021-00254-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00254-4

Keywords

Navigation