Skip to main content
Log in

Response Theory of Spiking Neural Networks

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The Feynman machine is a unique model expressing spiking-timing-dependent neural interactions through path integrals. It provides the capability to predict neural firing statistics very precisely. If time-ordered neural interactions are to be represented more properly, however, the classical form of the model needs to be improved. We here introduce how to describe neural interactions by adopting the second quantization formalism; this is requisite for expressing adequately the firing states deviating from a reference state and for calculating firing statistics through a perturbation method. The formulation is also helpful in picking out the neural firings with causal relationships and in predicting activations of a neural network in response to a given external input. This capability is essential for describing the function of a neural network based on the relationship between the input and the output firing patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Dayan and L. F. Abbott, Theoretical Neuroscience (MIT Press, London, 2001).

    MATH  Google Scholar 

  2. W. Gerstner and W. M. Kistler, Spiking Neuron Models (Cambridge University Press, New York, 2002).

    Book  Google Scholar 

  3. W. Gerstner, W. M. Kistler and R. Naud, Neuronal Dynamics (Cambridge University Press, New York, 2014).

    Book  Google Scholar 

  4. H. Markram, J. Lubke, M. Frotscher and B. Sakamann, Science 275, 213 (1997).

    Article  Google Scholar 

  5. L. Zhang et al., Nature 95, 37 (1998).

    Article  ADS  Google Scholar 

  6. G-Q. Bi and M-M. Poo, J. Neurosci. 18, 10464 (1998).

    Article  Google Scholar 

  7. L. F. Abbott and S. B. Nelson, Nat. Neurosci. 3, 1178 (2000).

    Article  Google Scholar 

  8. M. W. Cho and M. Y. Choi, Europhys. Lett. 115, 38001 (2016).

    Article  ADS  Google Scholar 

  9. M. W. Cho, J. Korean Phys. Soc. 71, 222 (2017).

    Article  ADS  Google Scholar 

  10. J. J. Hopfield, Proc. Natl. Acad. Sci. U.S.A. 79, 2554 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  11. D. H. Ackley, G. Hinton and T. Sejnowski, Cogn. Sci. 9, 147 (1985).

    Article  Google Scholar 

  12. M. W. Cho, J. Korean Phys. Soc. 73, 1385 (2018).

    Article  ADS  Google Scholar 

  13. G. E. Uhlenbeck and L. S. Ornstein, Phys. Rev. 36, 823 (1930).

    Article  ADS  Google Scholar 

  14. H. Risken, Fokker-Plank Equation: Method of Solution and Applications (Springer-Verlag, New York, 1989).

    Book  Google Scholar 

  15. M. W. Cho, New Phys.: Sae Mulli 67, 862 (2017).

    Google Scholar 

  16. M. W. Cho, New Phys.: Sae Mulli 69, 874 (2019).

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Sungshin Women’s University Research Grant of 2018-1-21-012/1. M.Y.C. also acknowledges the support from the National Research Foundation of Korea through the Basic Science Research Program (Grant No. 2019R1F1A1046285).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Myoung Won Cho or M. Y. Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, M.W., Choi, M.Y. Response Theory of Spiking Neural Networks. J. Korean Phys. Soc. 77, 168–176 (2020). https://doi.org/10.3938/jkps.77.168

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.77.168

Keywords

Navigation