Skip to main content
Log in

Photoanode Thickness Optimization and Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells based on a Carbazole-Containing Ruthenium Dye

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We studied the influence of photoanode thickness on the photovoltaic characteristics and impedance responses of the dye-sensitized solar cells based on a ruthenium dye containing a hexyloxyl-substituted carbazole unit (Ru-HCz). As the thickness of photoanode increases from 4.2 μm to 14.8 μm, the dye-loading amount and the efficiency increase. The device with thicker photoanode shows a decrease in the efficiency due to the higher probability of recombination of electron-hole pairs before charge extraction. We also analyzed the electron-transfer and recombination characteristics as a function of photoanode thickness through detailed electrochemical impedance spectroscopy analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. O’Regan and M. Grätzel, Nature 353, 737 (1991).

    Article  Google Scholar 

  2. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, Chem. Rev. 110, 6595 (2010).

    Article  Google Scholar 

  3. S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin and M. Grätzel, Nature Chem. 6, 242 (2014).

    Article  ADS  Google Scholar 

  4. J. Choi, H. M. Nguyen, N. Kim, J-W. Oh and F. S. Kim, Mol. Cryst. Liq. Cryst. 620, 78 (2015).

    Article  Google Scholar 

  5. M. Ye, X. Wen, M. Wang, J. Iocozzia, N. Zhang, C. Lin and Z. Lin, Mater. today 18, 155 (2015).

    Article  Google Scholar 

  6. J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan and G. Luo, Chem. Rev. 115, 2136 (2015).

    Article  Google Scholar 

  7. Z. Yang, J. Li, Y. Liu and W. Zhang, J. Korean Phys. Soc. 70, 758 (2017).

    Article  ADS  Google Scholar 

  8. G. Yun, M. Balamurugan, K-S. Ahn, S-K. Lee, S. H. Kang and D-H. Lim, J. Korean Phys. Soc. 72, 260 (2018).

    Article  ADS  Google Scholar 

  9. J-S. Moon, C. Kim, W-G. Kim, I. Kim, K. Kyhm, J-W. Oh and N. Kim, J. Photochem. Photobiol. A 310, 141 (2015).

    Article  Google Scholar 

  10. Y. Cao, Y. Saygili, A. Ummadisingu, J. Teuscher, J. Luo, N. Pellet, F. Giordano, S. M. Zakeeruddin, J-E. Moser and M. Freitag, Nat. Commun. 8, 15390 (2017).

    Article  ADS  Google Scholar 

  11. A. Yella, C. L. Mai, S. M. Zakeeruddin, S. N. Chang, C. H. Hsieh, C. Y. Yeh and M. Grätzel, Angew. Chem. 126, 3017 (2014).

    Article  Google Scholar 

  12. J. Choi, H. M. Nguyen, S. Yoon, N. Kim, J-W. Oh and F. S. Kim, Mol. Cryst. Liq. Cryst. 600, 22 (2014).

    Article  Google Scholar 

  13. Q. Li, L. Lu, C. Zhong, J. Huang, Q. Huang, J. Shi, X. Jin, T. Peng, J. Qin and Z. Li, Chem. Eur. J. 15, 9664 (2009).

    Article  Google Scholar 

  14. Z-S. Wang, Y. Cui, Y. Dan-oh, C. Kasada, A. Shinpo and K. Hara, J. Phys. Chem. C 111, 7224 (2007).

    Article  Google Scholar 

  15. H. Choi, M. Shin, K. Song, M-S. Kang, Y. Kang and J. Ko, J. Mater. Chem. A 2, 12931 (2014).

    Article  Google Scholar 

  16. Z-S. Wang, N. Koumura, Y. Cui, M. Takahashi, H. Sekiguchi, A. Mori, T. Kubo, A. Furube and K. Hara, Chem. Mater. 20, 3993 (2008).

    Article  Google Scholar 

  17. N. Hong Minh, V. Dinh Lam and N. Duc Nghia, Adv. Nat. Sci.: Nanosci. Nanotechnol. 2, 045009 (2011).

    Google Scholar 

  18. K-H. Kim, S-M. Lee, M-H. Seo, S-E. Cho, W-P. Hwang, S-H. Park, Y-K. Kim, J-K. Lee and M-R. Kim, Macromol. Res. 20, 128 (2012).

    Article  Google Scholar 

  19. S. Somasundaram, S. Jeon and S. Park, Macromol. Res. 24, 226 (2016).

    Article  Google Scholar 

  20. L. Vacareanu, T. Virag and M. Grigoras, Macromol. Res. 24, 249 (2016).

    Article  Google Scholar 

  21. M. J. Cho, T. W. Lee, H. S. Kim, J-I. Jin, D. H. Choi, Y. M. Kim and B-K. Ju, Macromol. Res. 15, 595 (2007).

    Article  Google Scholar 

  22. Q. Chai, W. Li, Y. Wu, K. Pei, J. Liu, Z. Geng, H. Tian and W. Zhu, ACS Appl. Mater. Interfaces 6, 14621 (2014).

    Article  Google Scholar 

  23. M. Ohta, N. Koumura, K. Hara and S. Mori, Electrochem. Commun. 13, 778 (2011).

    Article  Google Scholar 

  24. N. Koumura, Z-S. Wang, S. Mori, M. Miyashita, E. Suzuki and K. Hara, J. Am. Chem. Soc. 128, 14256 (2006).

    Article  Google Scholar 

  25. K-H. Park, T-Y. Kim, J-H. Kim, H. J. Kim, C. K. Hong and J-W. Lee, J. Electroanal. Chem. 708, 39 (2013).

    Article  Google Scholar 

  26. Y-H. Kim, I-K. Lee, Y-S. Song, M-H. Lee, B-Y. Kim, N-I. Cho and D. Y. Lee, Electron. Mater. Lett. 10, 445 (2014).

    Article  ADS  Google Scholar 

  27. E. Parvazian, F. Karimzadeh and M. Enayati, J. Electron. Mater. 43, 1450 (2014).

    Article  ADS  Google Scholar 

  28. H-M. Nguyen, J. Choi, J. H. Heo, J-W. Oh, D-N. Nguyen and N. Kim, J. Nanosci. Nanotechnol. 10, 6811 (2010).

    Article  Google Scholar 

  29. T. P. Chou, Q. Zhang and G. Cao, J. Phys. Chem. C 111, 18804 (2007).

    Article  Google Scholar 

  30. Q. Wang, J-E. Moser and M. Grätzel, J. Phys. Chem. B 109, 14945 (2005).

    Article  Google Scholar 

  31. F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo and A. Hagfeldt, Sol. Energy Mater. Sol. Cells 87, 117 (2005).

    Article  Google Scholar 

  32. J. Van de Lagemaat, N-G. Park and A. Frank, J. Phys. Chem. B 104, 2044 (2000).

    Article  Google Scholar 

  33. A. Hauch and A. Georg, Electrochim. Acta 46, 3457 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongwan Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J., Kim, F.S. Photoanode Thickness Optimization and Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells based on a Carbazole-Containing Ruthenium Dye. J. Korean Phys. Soc. 72, 639–644 (2018). https://doi.org/10.3938/jkps.72.639

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.72.639

Keywords

Navigation