Skip to main content
Log in

Phenylethynylene-substituted poly(triphenylamine vinylene): Post-modification synthesis and (spectro)electrochemical properties

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Phenylethynylene-substituted poly(triphenylamine vinylene) were synthesised in two steps by Wittig polycondensation reaction between 4,4'-diformyl-triphenylamine and bis(4-formyl phenyl)-N,N'-iodo-phenylamine in the presence of a phosphonium salt. The iodine-substituted poly(triphenylamine vinylene) were subsequently subjected to coupling reactions with phenylacetylene obtaining conjugated new structures and properties. The structures were confirmed by C13 and 1H nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR) spectroscopy. The attachment of phenylethynyl substituent to the backbone of the polymers influences the optical and electrochemical properties which were analysed by ultraviolet-visible (UV-Vis) and fluorescence spectroscopy. Having triphenylamine units along the backbone, the obtained polymers exhibit electrochemical activity and their redox characteristics were investigated by running cyclic voltammetry for polymer films deposited on working electrode surface. The electrochemical data were used to estimate their highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels and the band gap energy values (Eg). The polymers films change their colour while the potential is swept on the positive anodic domain, and this may be due to various oxidation states that undergo the polymers. The in situ UV-Vis vs. applied potential spectra were also recorded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Minaev, G. Baryshnikov, and H. Agren, Phys. Chem. Chem. Phys., 16, 1719 (2014).

    Article  CAS  Google Scholar 

  2. M. Mondragón, J. U. Balderas, L. G. Jimenez, M. E. Sánchez-Espíndola, and C. Falcony, Org. Electron., 15, 2993 (2014).

    Article  Google Scholar 

  3. J. M. Hales, S. Barlow, H. Kim, S. Mukhopadhyay, J. L. Brédas, J. W. Perry, and S. R. Marder, Chem. Mater., 26, 549 (2014).

    Article  CAS  Google Scholar 

  4. M. M. Murray, A. B. Holmes, Semiconducting Polymers: Chemistry, Physics and Engineering, G. Hadziinoannou and P. F. van Hutten, Eds., Wiley, VCH Weiheim, 2000.

  5. S. K. Yook and Y. Y. Lee, Synth. Met., 162, 1594 (2012).

    Article  CAS  Google Scholar 

  6. J. A. Mikroyannidis, M. M. Stylianakis, P. Suresh, and G. D. Sharma, Sol. Energy Mater. Sol. Cells, 93, 1792 (2009).

    Article  CAS  Google Scholar 

  7. J. Kwak, W. Z. Bae, M. Zorn, H. Woo, H. Yoon, J. Lim, S. W. Kang, S. Weber, H. J. Butt, R. Zentel, S. Lee, K. Char, and C. Lee, Adv. Mater., 21, 5022 (2009).

    Article  CAS  Google Scholar 

  8. M. Behl, E. Hattemer, M. Brehmer, and R. Zentel, Macromol. Chem. Phys., 203, 503 (2002).

    Article  CAS  Google Scholar 

  9. B. S. Kim, S. H. Yoo, O. Dongkenn, C. S. Wook, C. D. Soo, C. E. Lee, and Y. I. Yin, Synth. Met., 145, 229 (2004).

    Article  CAS  Google Scholar 

  10. H. J. Snaith, G. L. Whiting, B. Sun, N. C. Greenham, W. T. S. Huck, and R. H. Friend, Nano Lett., 5, 1653 (2005).

    Article  CAS  Google Scholar 

  11. Y. J. Shirota, Mater. Chem., 15, 75 (2005).

    Article  CAS  Google Scholar 

  12. M. Sommer, S. M. Lindner, and M. Thelakkat, Adv. Funct. Mater., 17, 1493 (2007).

    Article  CAS  Google Scholar 

  13. K. Y. Law, Chem. Rev., 93, 449 (1993).

    Article  CAS  Google Scholar 

  14. R. H. Baughman, J. L. Bredas, R. R. Chance, R. L. Elsenbaumer, and L. W. Shacklette, Chem. Rev., 82, 209 (1982).

    Article  CAS  Google Scholar 

  15. T. Yamamoto, M. Takagi, K. Kizu, T. Maruyama, K. Kubota, H. Kanbara, T. Kurihara, and T. Kaino, J. Chem. Soc. Chem. Commun., 9, 797 (1993).

    Article  Google Scholar 

  16. A. P. Davey, S. Elliott, O. Óconnor, and W. Blau, J. Chem. Soc. Chem. Commun., 14, 1433 (1995).

    Article  Google Scholar 

  17. K. P. Akshaya, P. M. Sandra, K. Amit, S. Ritu, N. Modeeparamil, and P. Manorajan, J. Polym. Sci., Part A: Polym. Chem., 49, 832 (2011).

    Google Scholar 

  18. T. Ivan, L. Vacareanu, and M. Grigoras, Int. J. Polym. Mater., 62, 270 (2013).

    Article  CAS  Google Scholar 

  19. Y.-H. Kim, J.-C. Park, H.-J. Kang, J.-W. Park, H.-S. Kim, J. H. Kim, and S.-K. Kwon, Macromol. Res., 13, 403 (2005).

    Article  CAS  Google Scholar 

  20. T. Ivan, L. Vacareanu, and M. Grigoras, Macromol. Res., 21, 1059 (2013).

    Article  Google Scholar 

  21. P. Strohriegl and J. V. Grazulevicius, Adv. Mater., 14, 1439 (2002).

    Article  CAS  Google Scholar 

  22. C. Ego, A.C. Grimsdale, F. Uckert, G. Yu, G. Srdanov, and K. Müllen, Adv. Mater., 14, 809 (2002).

    Article  CAS  Google Scholar 

  23. F. I. Wu, P. I. Shih, C. F Shu, Y. L. Tung, and Y. Chi, Macromolecules, 38, 9028 (2005).

    Article  CAS  Google Scholar 

  24. F. S. Linang, Y. J. Pu, T. Kurata, J. Kido, and H. Nishide, Polymer, 46, 3767 (2005).

    Article  Google Scholar 

  25. M. Grigoras and L. Stafie, Des. Monomers Polym., 12, 177 (2009).

    Article  CAS  Google Scholar 

  26. Z. Xia, J. He, P. Peng, Y. Zhou, Y. Li, and W. Tian, Tetrahedron Lett., 48, 5877 (2007).

    Article  CAS  Google Scholar 

  27. H. L. Jeong, S. Jiwon, J. Hwang, S.Y. Park, C. Haeyoung, and C. Myoungsik, Chem. Mater., 16, 456 (2004).

    Article  Google Scholar 

  28. G. Lai, R. X. Bu, J. Santos, and E. A. Mintz, Synlett, 1997, 1275 (1997).

    Article  Google Scholar 

  29. X. Haijian, H. Jiating, X. Bin, W. Shanpeng, L. Yaowen, and T. Wenjing, Tetrahedron, 64, 5736 (2008).

    Article  Google Scholar 

  30. L. Vacareanu and M. Grigoras, J. Appl. Electrochem., 40, 1969 (2010).

    Article  Google Scholar 

  31. T. Mallegol, S. Gmouth, A. A. Meziane, D. Blanchard, and O. Mongin, Synthesis, 11, 1771 (2005).

    Google Scholar 

  32. T. Ivan, L. Vacareanu, and M. Grigoras, Des. Monomers Polym., 17, 156 (2013).

    Article  Google Scholar 

  33. Y. J., Wang, H. S. Sheu, and C. K. Lai, Tetrahedron, 63, 1695 (2007).

    Article  CAS  Google Scholar 

  34. Y. Li, Y. Cao, J. Gao, D. Wang, G. Yu, and A. Heeger, Synth. Met., 99, 243 (1999).

    Article  CAS  Google Scholar 

  35. Z. A. Tan, E. Zhou, Y. Yang, Y. He, C. Yang, and Y. Li, Eur. Polym. J., 43, 855 (2007).

    Article  CAS  Google Scholar 

  36. T. Lana-Villarreal, J. M. Campin, N. Guijarro, and R. Gómez, Phys. Chem. Chem. Phys., 13, 4013 (2011).

    Article  CAS  Google Scholar 

  37. O. Yurchenko, D. Freytag, L. Borg, R. Zentel, J. Heinze, and S. Lidwings, J. Phys. Chem. B, 116, 30 (2012).

    Article  CAS  Google Scholar 

  38. J. F. Ambrose, L. L. Carpenter, and R. F. Nelson, Electrochem. Soc., 122, 876 (1975).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loredana Vacareanu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vacareanu, L., Virag (Ivan), T. & Grigoras, M. Phenylethynylene-substituted poly(triphenylamine vinylene): Post-modification synthesis and (spectro)electrochemical properties. Macromol. Res. 24, 249–260 (2016). https://doi.org/10.1007/s13233-016-4033-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-016-4033-5

Keywords

Navigation