Skip to main content

Advertisement

Log in

Photovoltaic Characterization and Electrochemical Impedance Spectroscopy Analysis of Dye-Sensitized Solar Cells Based on Composite TiO2–MWCNT Photoelectrodes

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Dye-sensitized solar cells (DSSCs) use the effect of light on dye molecules to generate electricity through a photoelectrochemical mechanism. The aim of this study is to synthesize nanostructured DSSCs based on titania–multiwalled carbon nanotube (TiO2–MWCNT) composite photoelectrodes and improve their performance and efficiency. DSSCs were fabricated based on single-layer TiO2–MWCNT photoelectrodes with various weight percentages of multiwalled carbon nanotubes and bilayer TiO2/TiO2–2%MWCNT photoelectrodes. The microstructure and thickness of the anodic layers were characterized by field-emission scanning electron microscopy and optical microscopy. Also, to compare the conversion efficiency and determine the electron behavior in the electrical equivalent circuit of these cells, photovoltaic characterization and electrochemical impedance spectroscopy (EIS) analysis were used. The DSSC based on a single-layer TiO2–2%MWCNT electrode, compared with other single-layer DSSCs in this study, had the highest conversion efficiency of 3.9% (for anodic layer thickness of 9 μm). The efficiency of the solar cell with the bilayer TiO2/TiO2–2%MWCNT photoelectrode, in comparison with the single-layer solar cell with the TiO2–2%MWCNT electrode, showed a 23% increase from 4.33% to 5.35% (for anodic layer thickness of 18 μm). EIS analysis indicated that the charge-transport resistance of the DSSC based on the bilayer photoelectrode, in comparison with the single-layer TiO2 and TiO2–2%MWCNT solar cells, was decreased by 68% and 57%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.J. Lion and W.W. Wong, Sol. Energy Mater. Sol. Cells 28, 9 (1992).

    Article  Google Scholar 

  2. A.G. Aberle, Thin Solid Films 517, 4706 (2009).

    Article  Google Scholar 

  3. B. O’Regan and M. Grätzel, Nature 353, 737 (1991).

    Article  Google Scholar 

  4. Md.K. Nazeeruddin, E. Baranoff, and M. Gratzel, Sol. Energy 85, 1172 (2011).

    Article  Google Scholar 

  5. M.A. Khan, M.S. Akhtar, and O.B. Yang, Sol. Energy 84, 2195 (2010).

    Article  Google Scholar 

  6. J.H. Park, Y. Jun, H.G. Yun, S.Y. Lee, and M.G. Kang, J. Electrochem. Soc. 155, 145 (2008).

    Article  Google Scholar 

  7. K.M. Lee, S.J. Wu, C.Y. Chen, C.G. Wu, M. Ikegami, K. Miyoshi, T. Miyasaka, and K.C. Ho, J. Mater. Chem. 19, 5009 (2009).

    Article  Google Scholar 

  8. Q. Zhang and G. Cao, Nano Today 6, 91 (2011).

    Article  Google Scholar 

  9. Y.Z. Zheng, X. Tao, L.X. Wang, H. Xu, Q. Hou, W.L. Zhou, and J.F. Chen, Chem. Mater. 22, 928 (2010).

    Article  Google Scholar 

  10. J.K. Lee, B.H. Jeong, S.I. Jang, Y.G. Kim, Y.W. Jang, S.B. Lee, and M.R. Kim, J. Ind. Eng. Chem. 15, 724 (2009).

    Article  Google Scholar 

  11. S. Hore, C. Vetter, R. Kern, H. Smit, and A. Hinsch, Sol. Energy Mater. Sol. Cells 90, 1176 (2006).

    Article  Google Scholar 

  12. K.G. Deepa, P. Lekha, and S. Sindhu, Sol. Energy 86, 326 (2012).

    Article  Google Scholar 

  13. S. Muduli, O. Game, V. Dhas, K. Vijayamohanan, K.A. Bogle, N. Valanoor, and S.B. Ogale, Sol. Energy 86, 1428 (2012).

    Article  Google Scholar 

  14. K. Ishikawa, C.J. Wen, K. Yamada, and T. Okubo, J. Chem. Eng. Jpn. 37, 645 (2004).

    Article  Google Scholar 

  15. C.S. Chou, Y.J. Lin, R.Y. Yang, and K.H. Liu, Adv. Powder Technol. 22, 31 (2011).

    Article  Google Scholar 

  16. G. Yang, J. Zhang, P. Wang, Q. Sun, J. Zheng, and Y. Zhu, Curr. Appl. Phys. 11, 376 (2011).

    Article  Google Scholar 

  17. W.J. Lin, C.T. Hsu, and Y.C. Tsai, J. Colloid Interface Sci. 358, 562 (2011).

    Article  Google Scholar 

  18. T. Sawatsuk, A. Chindaduang, C. Sae-Kung, S. Pratontep, and G. Tumcharern, Diam. Relat. Mater. 18, 524 (2009).

    Article  Google Scholar 

  19. J.Y. Ahn, J.H. Kim, K.J. Moon, J.H. Kim, C.S. Lee, M.Y. Kim, J.W. Kang, and S.H. Kim, Sol. Energy 92, 41 (2013).

    Article  Google Scholar 

  20. T. Shimizu, H. Abe, A. Ando, Y. Nakayama, and H. Tokumoto, Surf. Interface Anal. 37, 204 (2005).

    Article  Google Scholar 

  21. L. Song, P. Du, X. Shao, H. Cao, Q. Hui, and J. Xiong, Mater. Res. Bull. 48, 978 (2013).

    Article  Google Scholar 

  22. S. Ito, T.N. Murakami, P. Comte, P. Liska, C. Grätzel, M.K. Nazeeruddin, and M. Grätzel, Thin Solid Films 516, 4613 (2008).

    Article  Google Scholar 

  23. S. Ito, P. Chen, P. Comte, M.K. Nazeeruddin, P. Liska, P. Pechy, and M. Gratzel, Prog. Photovolt. Res. Appl. 15, 603 (2007).

    Article  Google Scholar 

  24. I.K. Ding, J. Melas-Kyriazi, N.L. Cevey-Ha, K.G. Chittibabu, S.M. Zakeeruddin, M. Gratzel, and M.D. McGehee, Org. Electron. 11, 1217 (2010).

    Article  Google Scholar 

  25. Y. Xie, S. Heo, S. Yoo, G. Ali, and S. Cho, Nanoscale Res. Lett. 5, 603 (2010).

    Article  Google Scholar 

  26. J. Shi, J. Liang, S. Peng, W. Xu, J. Pei, and J. Chen, Solid State Sci. 11, 433 (2009).

    Article  Google Scholar 

  27. W.C. Tu, Y.T. Chang, H.P. Wang, C.H. Yang, C.T. Huang, J.H. He, and S.C. Lee, Sol. Energy Mater. Sol. Cells 101, 200 (2012).

    Article  Google Scholar 

  28. K.M. Lee, C.W. Hu, H.W. Chen, and K.C. Ho, Sol. Energy Mater. Sol. Cells 92, 1628 (2008).

    Article  Google Scholar 

  29. J. Bisquert, F. Fabregat-Santiago, I. Mora-Seró, G. Garcia-Belmonte, and S. Gimenez, J. Phys. Chem. C 113, 17278 (2009).

    Article  Google Scholar 

  30. V. Ganapathy, B. Karunagaran, and S.W. Rhee, J. Power Sources 195, 5138 (2010).

    Article  Google Scholar 

  31. K.M. Lee, V. Suryanarayanan, and K.C. Ho, Sol. Energy Mater. Sol. Cells 91, 1416 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Parvazian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parvazian, E., Karimzadeh, F. & Enayati, M.H. Photovoltaic Characterization and Electrochemical Impedance Spectroscopy Analysis of Dye-Sensitized Solar Cells Based on Composite TiO2–MWCNT Photoelectrodes. J. Electron. Mater. 43, 1450–1459 (2014). https://doi.org/10.1007/s11664-014-3102-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3102-9

Keywords

Navigation