Skip to main content
Log in

High-efficiency diphenylsulfon derivative-based organic light-emitting diode exhibiting thermally-activated delayed fluorescence

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

A novel thermally-activated delayed fluorescence (TADF) material with diphenyl sulfone (DPS) as an electron acceptor and 3,6-dimethoxycarbazole (DMOC) and 1,3,6,8-Tetramethyl-9H-carbazole (TMC) as electron donors was investigated theoretically for a blue organic light emitting diode (OLED) emitter. We calculated the energies of the first singlet (S1) and the first triplet (T1) excited states of the TADF materials by using the dependence on the charge transfer amounts for the optimal Hartree-Fock percentage in the exchange-correlation of TD-DFT to perform density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations on the ground state. The calculated ΔE ST value, where ΔE ST is the difference in energy between the S1 and T1 states, of TMC-DPS (0.094 eV) was smaller than DMOC-DPS (0.386 eV) because of the large dihedral angles between the donor and the accepter moieties. We show that TMC-DPS would be a suitable blue OLED emitter because it has a large dihedral angle that creates a small spatial overlap between the highest occupied molecular orbital (HOMO) and the lowest occupied molecular orbital (LUMO), consequently, it has a small value of ΔE ST and an emission wavelength of 2.82 eV and 439.9 nm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. W. Tang and S. A. Vanslyke, Appl. Phys. Lett. 51, 913 (1987)

    Article  ADS  Google Scholar 

  2. C. Adachi, T. Tsutsui and S. Saito, J. Appl. Phys. 55, 813 (1989)

    Article  Google Scholar 

  3. M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson and S. R. Forrest, Appl. Phys. Lett. 75, 4 (1999)

    Article  ADS  Google Scholar 

  4. M. A. Baldo, M. E. Thompson and S. R. Forrest, Nature 403, 750 (2000).

    Article  ADS  Google Scholar 

  5. C. W. Huang, K. Y. Peng, C. Y. Liu, T. H. Jen, N. J. Yang and S. A. Chen, Adv. Mater. 20, 3709 (2008)

    Article  Google Scholar 

  6. Y. Zhang et al., Chem. Mater. 24, 61 (2012).

    Article  Google Scholar 

  7. M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson and S. R. Forrest, Nature 395, 151 (1998)

    Article  ADS  Google Scholar 

  8. C. Adachi, M. A. Baldo, M. E. Thompson and S. R. Forrest, J. Appl. Phys. 90, 5048 (2001).

    Article  ADS  Google Scholar 

  9. H. W. Ham, K. Y. Jung and Y. S. Kim, Thin Solid Film. 518, 6199 (2010)

    Article  ADS  Google Scholar 

  10. S.W. Park, H. W. Ham and Y. S. Kim, J. Nanosci. Nanotechnol. 12, 3369 (2012).

    Article  Google Scholar 

  11. D. Y. Kondakov, T. D. Pawlik, T. K. Hatwar and J. P. Spindler, J. Appl. Phys. 106, 124510 (2009)

    Article  ADS  Google Scholar 

  12. A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazak and C. Adachi, Appl. Phys. Lett. 98, 083302 (2011).

    Article  ADS  Google Scholar 

  13. K. Goushi, K. Yoshida, K. Sato and C. Adachi, Nat. Photonics 6, 253 (2012).

    Article  ADS  Google Scholar 

  14. M. N. Berberan-Santos and J. M. M. Garcia, J. Am. Chem. Soc. 118, 9391 (1996).

    Article  Google Scholar 

  15. J. Lee, K. Shizu, H. Tanaka, H. Nomura, T. Yasudaabc and C. Adachi, J. Mater. Chem. 1, 4599 (2013).

    Article  Google Scholar 

  16. Z. R. Grabowski, K. Rotkiewicz and W. Rettig, Chem. Rev. 103, 3899 (2003).

    Article  Google Scholar 

  17. S. Huang, Q. Zhang, Y. Shiota, T. Nakagawa, K. Kuwabara, K. Yoshizawa and C. Adachi, J. Chem. Theory Comput. 9, 3872 (2013).

    Article  Google Scholar 

  18. S. Wu, M. Aonuma, Q. Zhang, S. Huang, T. Nakagawa, K. Kuwabara and C. Adachi, J. Mater. Chem. C 2, 421 (2014).

    Article  Google Scholar 

  19. S. I. Gorelsky and A. B. P. Lever, J. Organomet. Chem. 635, 187 (2001).

    Article  Google Scholar 

  20. M. M. Rothmann, E. Fuchs, C. Schildknecht, N. Langer, C. Lennartz, I. Münster and P. Strohriegl, Org. Electron. 12, 1192 (2011)

    Article  Google Scholar 

  21. P. Schrögel, N. Langer, C. Schildknecht, G. Wagenblast, C. Lennartz and P. Strohriegl, Org. Electron. 12, 2047 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Sik Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, G.H., Kim, Y.S. High-efficiency diphenylsulfon derivative-based organic light-emitting diode exhibiting thermally-activated delayed fluorescence. Journal of the Korean Physical Society 69, 398–401 (2016). https://doi.org/10.3938/jkps.69.398

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.69.398

Keywords

Navigation