Skip to main content
Log in

Recent Progress in Phenoxazine-Based Thermally Activated Delayed Fluorescent Compounds and Their Full-Color Organic Light-Emitting Diodes

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Third-generation organic light-emitting diodes (OLEDs) based on metal-free thermally activated delayed fluorescent (TADF) materials have sparked tremendous interest in the last decade due to their nearly 100% exciton utilization efficiency, which can address the low-efficiency issue of the first-generation fluorescent emitters and the high-cost issue of the second-generation organometallic phosphorescent emitters. Construction of efficient and stable TADF-OLEDs requires utilizing TADF materials with a narrow singlet–triplet energy gap (ΔEST), high photoluminescence quantum yield (PLQY) and short TADF lifetime. A small ΔEST is necessary for an efficient reverse intersystem crossing (RISC) process, which can be achieved through the effective spatial separation of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). TADF emitters have been generally designed as intramolecular charge transfer (ICT) molecules with highly twisted donor–acceptor (D–A) molecular architectures. A wide variety of combinations of electron donors and acceptors have been explored. In this review, we shall focus on recent progress in organic TADF molecules incorporating strong electron-donor phenoxazine moiety and their application as emitting layer (EML) in OLEDs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Chart 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Choi S, Kang C-m, Byun C-W, Cho H, Kwon B-H, Han J-H, Yang J-H, Shin J-W, Hwang C-S, Cho NS, Lee KM, Kim H-O, Kim E, Yoo S, Lee H (2020) Thin-film transistor-driven vertically stacked full-color organic light-emitting diodes for high-resolution active-matrix displays. Nat Commun 11:2732. https://doi.org/10.1038/s41467-020-16551-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ilmi R, Zhang D, Dutra JDL, Dege N, Zhou L, Wong W-Y, Raithby PR, Khan MS (2021) A tris β-diketonate europium(III) complex based OLED fabricated by thermal evaporation method displaying efficient bright red emission. Org Electron 96:106216. https://doi.org/10.1016/j.orgel.2021.106216

    Article  CAS  Google Scholar 

  3. Ilmi R, Khan MS, Sun W, Zhou L, Wong W-Y, Raithby PR (2019) A single component white electroluminescent device fabricated from a metallo-organic terbium complex. J Mater Chem C 7:13966–13975. https://doi.org/10.1039/C9TC04653D

    Article  CAS  Google Scholar 

  4. Pode R (2020) Organic light emitting diode devices: an energy efficient solid state lighting for applications. Renew Sustain Energy Rev 133:110043. https://doi.org/10.1016/j.rser.2020.110043

    Article  Google Scholar 

  5. Ilmi R, Wang J, Dutra JDL, Zhou L, Wong W-Y, Raithby PR, Khan MS (2023) Efficient red organic light emitting diodes of nona coordinate europium Tris(β-diketonato) complexes bearing 4’-Phenyl-2,2’:6’,2’’-terpyridine. Chem Eur J. https://doi.org/10.1002/chem.202300376

    Article  PubMed  Google Scholar 

  6. Ilmi R, Li X, Al Rasbi NK, Zhou L, Wong WY, Raithby PR, Khan MS (2023) Two new red-emitting ternary europium(III) complexes with high photoluminescence quantum yields and exceptional performance in OLED devices. Dalton Trans 52:12885–12891. https://doi.org/10.1039/d3dt02147e

    Article  CAS  PubMed  Google Scholar 

  7. Murawski C, Gather MC (2021) Emerging biomedical applications of organic light-emitting diodes. Adv Opt Mater 9:2100269. https://doi.org/10.1002/adom.202100269

    Article  CAS  Google Scholar 

  8. Graydon O (2023) OLEDs are more than just displays. Nat Photon 17:216–217. https://doi.org/10.1038/s41566-023-01160-w

    Article  CAS  Google Scholar 

  9. Yang Z, Mao Z, Xie Z, Zhang Y, Liu S, Zhao J, Xu J, Chi Z, Aldred MP (2017) Recent advances in organic thermally activated delayed fluorescence materials. Chem Soc Rev 46:915–1016. https://doi.org/10.1039/C6CS00368K

    Article  CAS  PubMed  Google Scholar 

  10. Jiang H, Jin J, Wong W-Y (2023) High-performance multi-resonance thermally activated delayed fluorescence emitters for narrowband organic light-emitting diodes. Adv Funct Mater. https://doi.org/10.1002/adfm.202306880

    Article  Google Scholar 

  11. Segal M, Baldo MA, Holmes RJ, Forrest SR, Soos ZG (2003) Excitonic singlet-triplet ratios in molecular and polymeric organic materials. Phys Rev B 68:075211. https://doi.org/10.1103/PhysRevB.68.075211

    Article  CAS  Google Scholar 

  12. Baldo MA, O’Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR (1998) Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395:151–154. https://doi.org/10.1038/25954

    Article  CAS  Google Scholar 

  13. Dirac PAM, Fowler RH (1997) The quantum theory of the electron. Proc R Soc Lond Ser A Contain Pap Math Phys Charact 117:610–624. https://doi.org/10.1098/rspa.1928.0023

    Article  Google Scholar 

  14. Volz D, Wallesch M, Fléchon C, Danz M, Verma A, Navarro JM, Zink DM, Bräse S, Baumann T (2015) From iridium and platinum to copper and carbon: new avenues for more sustainability in organic light-emitting diodes. Green Chem 17:1988–2011. https://doi.org/10.1039/C4GC02195A

    Article  CAS  Google Scholar 

  15. Xu Y, Xu P, Hu D, Ma Y (2021) Recent progress in hot exciton materials for organic light-emitting diodes. Chem Soc Rev 50:1030–1069. https://doi.org/10.1039/D0CS00391C

    Article  CAS  PubMed  Google Scholar 

  16. Kondakov DY (2015) Triplet–triplet annihilation in highly efficient fluorescent organic light-emitting diodes: current state and future outlook. Philos Trans R Soc A Math Phys Eng Sci 373:20140321. https://doi.org/10.1098/rsta.2014.0321

    Article  CAS  Google Scholar 

  17. Parker CA, Hatchard CG (1961) Triplet-singlet emission in fluid solutions. Phosphorescence of eosin. Trans Faraday Soc 57:1894–1904. https://doi.org/10.1039/TF9615701894

    Article  Google Scholar 

  18. Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C (2012) Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492:234–238. https://doi.org/10.1038/nature11687

    Article  CAS  PubMed  Google Scholar 

  19. Endo A, Sato K, Yoshimura K, Kai T, Kawada A, Miyazaki H, Adachi C (2011) Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes. Appl Phys Lett. https://doi.org/10.1063/1.3558906

    Article  Google Scholar 

  20. Ravinson DSM, Thompson ME (2020) Thermally assisted delayed fluorescence (TADF): fluorescence delayed is fluorescence denied. Mater Horizons 7:1210–1217. https://doi.org/10.1039/D0MH00276C

    Article  CAS  Google Scholar 

  21. Chen X-K, Kim D, Brédas J-L (2018) Thermally activated delayed fluorescence (TADF) path toward efficient electroluminescence in purely organic materials: molecular level insight. Acc Chem Res 51:2215–2224. https://doi.org/10.1021/acs.accounts.8b00174

    Article  CAS  PubMed  Google Scholar 

  22. Kim K-H, Kim J-J (2018) Origin and control of orientation of phosphorescent and TADF dyes for high-efficiency OLEDs. Adv Mater 30:1705600. https://doi.org/10.1002/adma.201705600

    Article  CAS  Google Scholar 

  23. Wong MY, Zysman-Colman E (2017) Purely organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Adv Mater 29:1605444. https://doi.org/10.1002/adma.201605444

    Article  CAS  Google Scholar 

  24. Slater JC (2004) Atomic radii in crystals. J Chem Phys 41:3199–3204. https://doi.org/10.1063/1.1725697

    Article  Google Scholar 

  25. Freitas VLS, Gomes JRB, Ribeiro da Silva MDMC (2014) Structural, energetic and reactivity properties of phenoxazine and phenothiazine. J Chem Thermodyn 73:110–120. https://doi.org/10.1016/j.jct.2013.11.013

    Article  CAS  Google Scholar 

  26. Ionescu M, Mantsch H (1967). In: Katritzky AR, Boulton AJ (eds) Advances in heterocyclic chemistry. Academic Press, pp 83–113

    Google Scholar 

  27. Nguyen V-N, Kumar A, Lee MH, Yoon J (2020) Recent advances in biomedical applications of organic fluorescence materials with reduced singlet–triplet energy gaps. Coord Chem Rev 425:213545. https://doi.org/10.1016/j.ccr.2020.213545

    Article  CAS  Google Scholar 

  28. Shukla S, Dwivedi J, Yaduvanshi N, Jain S (2021) Medicinal and biological significance of phenoxazine derivatives mini-reviews in medicinal. Chemistry 21:1541–1555. https://doi.org/10.2174/1389557520666201214102151

    Article  CAS  Google Scholar 

  29. Zhu X-Q, Dai Z, Yu A, Wu S, Cheng J-P (2008) Driving forces for the mutual conversions between phenothiazines and their various reaction intermediates in acetonitrile. J Phys Chem B 112:11694–11707. https://doi.org/10.1021/jp8041268

    Article  CAS  PubMed  Google Scholar 

  30. Im Y, Kim M, Cho YJ, Seo J-A, Yook KS, Lee JY (2017) Molecular design strategy of organic thermally activated delayed fluorescence emitters. Chem Mater 29:1946–1963. https://doi.org/10.1021/acs.chemmater.6b05324

    Article  CAS  Google Scholar 

  31. Al-Ghamdi SN, Al-Ghamdi HA, El-Shishtawy RM, Asiri AM (2021) Advances in phenothiazine and phenoxazine-based electron donors for organic dye-sensitized solar cells. Dyes Pigm 194:109638. https://doi.org/10.1016/j.dyepig.2021.109638

    Article  CAS  Google Scholar 

  32. Buene AF, Almenningen DM (2021) Phenothiazine and phenoxazine sensitizers for dye-sensitized solar cells – an investigative review of two complete dye classes. J Mater Chem C 9:11974–11994. https://doi.org/10.1039/D1TC03207K

    Article  CAS  Google Scholar 

  33. Liu Y, Li C, Ren Z, Yan S, Bryce MR (2018) All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Nat Rev Mater 3:18020. https://doi.org/10.1038/natrevmats.2018.20

    Article  CAS  Google Scholar 

  34. Shen Y-F, Li M, Zhao W-L, Wang Y-F, Lu H-Y, Chen C-F (2021) Quinoline-based TADF emitters exhibiting aggregation-induced emission for efficient non-doped organic light-emitting diodes. Mater Chem Front 5:834–842. https://doi.org/10.1039/D0QM00628A

    Article  CAS  Google Scholar 

  35. Hall D, Rajamalli P, Duda E, Suresh SM, Rodella F, Bagnich S, Carpenter-Warren CL, Cordes DB, Slawin AMZ, Strohriegl P, Beljonne D, Köhler A, Olivier Y, Zysman-Colman E (2021) Substitution effects on a new pyridylbenzimidazole acceptor for thermally activated delayed fluorescence and their use in organic light-emitting diodes. Adv Opt Mater 9:2100846. https://doi.org/10.1002/adom.202100846

    Article  CAS  Google Scholar 

  36. Krotkus S, Matulaitis T, Diesing S, Copley G, Archer E, Keum C, Cordes DB, Slawin AM, Gather MC, Zysman-Colman E (2021) Fast delayed emission in new pyridazine-based compounds. Front Chem 8:572862

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gudeika D, Bezvikonnyi O, Volyniuk D, Grazulevicius JV (2020) Differently substituted benzonitriles for non-doped OLEDs. Dyes Pigm 172:107789. https://doi.org/10.1016/j.dyepig.2019.107789

    Article  CAS  Google Scholar 

  38. Kim H, Lee Y, Lee H, Hong J-I, Lee D (2021) Click-To-twist strategy to build blue-to-green emitters: bulky triazoles for electronically tunable and thermally activated delayed fluorescence. ACS Appl Mater Interfaces 13:12286–12295. https://doi.org/10.1021/acsami.1c00278

    Article  CAS  PubMed  Google Scholar 

  39. Ji S-C, Zhao T, Wei Z, Meng L, Tao X-D, Yang M, Chen X-L, Lu C-Z (2022) Manipulating excited states via Lock/Unlock strategy for realizing efficient thermally activated delayed fluorescence emitters. Chem Eng J 435:134868. https://doi.org/10.1016/j.cej.2022.134868

    Article  CAS  Google Scholar 

  40. Chen J-X, Xiao Y-F, Wang K, Fan X-C, Cao C, Chen W-C, Zhang X, Shi Y-Z, Yu J, Geng F-X, Zhang X-H, Lee C-S (2020) Origin of thermally activated delayed fluorescence in a donor–acceptor type emitter with an optimized nearly planar geometry. J Mater Chem C 8:13263–13269. https://doi.org/10.1039/D0TC03747H

    Article  CAS  Google Scholar 

  41. Wang P, Yu J, Chen S, Yu H, Yan X, Guan Y, Chen J, Li L (2020) 3-Benzoyl-4H-chromen-4-one: a novel twisted acceptor for highly efficient thermally activated delayed fluorescence emitters. Dyes Pigm 183:108744. https://doi.org/10.1016/j.dyepig.2020.108744

    Article  CAS  Google Scholar 

  42. Chen H, Liu H, Xiong Y, He J, Zhao Z, Tang BZ (2022) New aggregation-induced delayed fluorescent materials for efficient OLEDs with high stabilities of emission color and efficiency. Mater Chem Front 6:924–932. https://doi.org/10.1039/D1QM01625C

    Article  CAS  Google Scholar 

  43. Liu H, Liu H, Fan J, Guo J, Zeng J, Qiu F, Zhao Z, Tang BZ (2020) An effective design strategy for robust aggregation-induced delayed fluorescence luminogens to improve efficiency stability of nondoped and doped OLEDs. Adv Opt Mater 8:2001027. https://doi.org/10.1002/adom.202001027

    Article  CAS  Google Scholar 

  44. Zhang D, Wei H, Wang Y, Dai G, Zhao X (2020) Synthesis and properties of ipsilateral double substituted diphenylsulfone thermally activated delayed fluorescent materials. Dyes Pigm 174:108028. https://doi.org/10.1016/j.dyepig.2019.108028

    Article  CAS  Google Scholar 

  45. Guo R, Leng P, Zhang Q, Wang Y, Lv X, Sun S, Ye S, Duan Y, Wang L (2021) Donor engineering for diphenylsulfone derivatives with both thermally activated delayed fluorescence and aggregation-induced emission properties. Dyes Pigm 184:108781. https://doi.org/10.1016/j.dyepig.2020.108781

    Article  CAS  Google Scholar 

  46. Gao S, Chen X, Ge X, Chen Z, Zhao J, Chi Z (2022) Asymmetric thermally activated delayed fluorescence materials rendering high-performance OLEDs through both thermal evaporation and solution-processing. Chem Res Chin U 38:1526–1531. https://doi.org/10.1007/s40242-022-2111-0

    Article  CAS  Google Scholar 

  47. Leng P, Sun S, Guo R, Zhang Q, Liu W, Lv X, Ye S, Wang L (2020) Modifying the AIE-TADF chromophore with host-substituents to achieve high efficiency and low roll-off non-doped OLEDs. Org Electron 78:105602. https://doi.org/10.1016/j.orgel.2019.105602

    Article  CAS  Google Scholar 

  48. Li H-z, Zhang D, Xie F-m, Zeng X-Y, Li Y-Q, Wei H-x, Dai G-l, Tang J-X, Zhao X (2021) Thermally activated delayed fluorescence materials based on 3, 3′-position substituted bis(phenylsulfonyl)benzene. Dyes Pigm 188:109210. https://doi.org/10.1016/j.dyepig.2021.109210

    Article  CAS  Google Scholar 

  49. Xiao R, Xiang Y, Cao X, Li N, Huang T, Zhou C, Zou Y, Xie G, Yang C (2020) Star-shaped thermally activated delayed fluorescence emitters with a tri-armed arylsulfonic acceptor for efficient solution processed organic light emitting diodes. J Mater Chem C 8:5580–5586. https://doi.org/10.1039/C9TC07049D

    Article  CAS  Google Scholar 

  50. Zhong D, Yu Y, Yue L, Yang X, Ma L, Zhou G, Wu Z (2021) Optimizing molecular rigidity and thermally activated delayed fluorescence (TADF) behavior of phosphoryl center π-conjugated heterocycles-based emitters by tuning chemical features of the tether groups. Chem Eng J 413:127445. https://doi.org/10.1016/j.cej.2020.127445

    Article  CAS  Google Scholar 

  51. Chen Y-W, Tsai C-C, Chih H-Y, Tsai H-Y, Wang W-Y, Liu G-Y, Wu M-Y, Chang C-H, Lu C-W (2022) Realizing performance improvement of borylated TADF materials for OLEDs. Dyes Pigm 197:109892. https://doi.org/10.1016/j.dyepig.2021.109892

    Article  CAS  Google Scholar 

  52. Yang D, Kim J-M, Huh J-S, Kim J-J, Hong J-I (2021) The effect of the electron-donor ability on the OLED efficiency of twisted donor-acceptor type emitters. Org Electron 95:106187. https://doi.org/10.1016/j.orgel.2021.106187

    Article  CAS  Google Scholar 

  53. Huang T, Chen Z, Zou Y, Gong S, Yang C (2021) Novel tetracoordinated organoboron emitters for thermally activated delayed fluorescence organic light-emitting diodes. Dyes Pigm 188:109192. https://doi.org/10.1016/j.dyepig.2021.109192

    Article  CAS  Google Scholar 

  54. Chen J-X, Wang H, Zhang X, Xiao Y-F, Wang K, Zhou L, Shi Y-Z, Yu J, Lee C-S, Zhang X-H (2022) Using fullerene fragments as acceptors to construct thermally activated delayed fluorescence emitters for high-efficiency organic light-emitting diodes. Chem Eng J 435:134731. https://doi.org/10.1016/j.cej.2022.134731

    Article  CAS  Google Scholar 

  55. Tian X, Yao M, Liang X, Zhou C, Xiao S, Gao Y, Liu H, Zhang S-T, Yang B (2022) Excited-state regulated electroluminescence performance from thermally-activated delayed fluorescence (TADF) to hybridized local and charge-transfer (HLCT) emission. Dyes Pigm 205:110463. https://doi.org/10.1016/j.dyepig.2022.110463

    Article  CAS  Google Scholar 

  56. Kothavale S, Lee KH, Lee JY (2020) CN-modified imidazopyridine as a new electron accepting unit of thermally activated delayed fluorescent emitters. Chem Eur J 26:845–852. https://doi.org/10.1002/chem.201903877

    Article  CAS  PubMed  Google Scholar 

  57. Chen X-L, Tao X-D, Wei Z, Meng L, Lin F-L, Zhang D-H, Jing Y-Y, Lu C-Z (2021) Thermally activated delayed fluorescence amorphous molecular materials for high-performance organic light-emitting diodes. ACS Appl Mater Interfaces 13:46909–46918. https://doi.org/10.1021/acsami.1c12188

    Article  CAS  PubMed  Google Scholar 

  58. Huang Y, Zhang D-H, Tao X-D, Wei Z, Jiang S, Meng L, Yang M-X, Chen X-L, Lu C-Z (2022) Triptycene-derived thermally activated delayed fluorescence emitters with combined through-bond and through-space charge transfers. Dyes Pigm 204:110397. https://doi.org/10.1016/j.dyepig.2022.110397

    Article  CAS  Google Scholar 

  59. Luo X-F, Li F-L, Zou J-W, Zou Q, Su J, Mao M-X, Zheng Y-X (2021) A series of fused carbazole/carbonyl based blue to yellow-green thermally activated delayed fluorescence materials for efficient organic light-emitting diodes. Adv Opt Mater 9:2100784. https://doi.org/10.1002/adom.202100784

    Article  CAS  Google Scholar 

  60. Liu H, Song S, Chen H, Zhao Z, Xie G, Tang BZ (2021) Novel aggregation-induced delayed fluorescence luminogens for vacuum-deposited and solution-processed OLEDs with very small efficiency roll-offs. Org Electron 99:106339. https://doi.org/10.1016/j.orgel.2021.106339

    Article  CAS  Google Scholar 

  61. Nasiri S, Macionis S, Gudeika D, Volyniuk D, Grazulevicius JV (2020) Facile structure-modification of xanthenone based OLED emitters exhibiting both aggregation induced emission enhancement and thermally activated delayed fluorescence. J Lumin 220:116955. https://doi.org/10.1016/j.jlumin.2019.116955

    Article  CAS  Google Scholar 

  62. Zhang SL, Shi YZ, Wang K, Fan XC, Yu J, Ou XM, Zhang XH (2021) Pyridine-substituted triazine as an acceptor for thermally activated delayed fluorescence emitters showing high efficiency and low roll-off in organic light-emitting diodes. Mater Today Energy 20:100581. https://doi.org/10.1016/j.mtener.2020.100581

    Article  CAS  Google Scholar 

  63. Shi Y-Z, Wang K, Fan X-C, Chen J-X, Ou X-M, Yu J, Jie J-S, Lee C-S, Zhang X-H (2021) High-performance nondoped organic light-emitting diode based on a thermally activated delayed fluorescence emitter with 1D intermolecular hydrogen bonding interactions. Adv Opt Mater 9:2100461. https://doi.org/10.1002/adom.202100461

    Article  CAS  Google Scholar 

  64. Wang Z, Zhu X, Zhang S, Xu L, Zhao Z, He G (2021) Twisted biphenyl-diimide derivatives with aggregation-induced emission and thermally activated delayed fluorescence for high performance OLEDs. Adv Opt Mater 9:2001764. https://doi.org/10.1002/adom.202001764

    Article  CAS  Google Scholar 

  65. Zhang L, Wang Y-F, Li M, Gao Q-Y, Chen C-F (2021) Quinoline-based aggregation-induced delayed fluorescence materials for highly efficient non-doped organic light-emitting diodes. Chin Chem Lett 32:740–744. https://doi.org/10.1016/j.cclet.2020.07.041

    Article  CAS  Google Scholar 

  66. Wu X, Gong C, Jiang X, Gao J, Li M, He R, Chen P, Shen W (2022) Face-to-face order-packed mode promotes thermally activated delayed fluorescence to achieve stronger aggregation-induced emission. J Sci Adv Mater Devices 7:100432. https://doi.org/10.1016/j.jsamd.2022.100432

    Article  CAS  Google Scholar 

  67. Xu J, Wu X, Li J, Zhao Z, Tang BZ (2022) Regulating photophysical property of aggregation-induced delayed fluorescence luminogens via heavy atom effect to achieve efficient organic light-emitting diodes. Adv Opt Mater 10:2102568. https://doi.org/10.1002/adom.202102568

    Article  CAS  Google Scholar 

  68. Mei Y, Liu D, Li J, Li H, Wei W (2021) Acridin-9(10H)-one based thermally activated delayed fluorescence material: simultaneous optimization of RISC and radiation processes to boost luminescence efficiency. J Mater Chem C 9:5885–5892. https://doi.org/10.1039/D1TC00592H

    Article  CAS  Google Scholar 

  69. Wang J, Li N, Chen Q, Xiang Y, Zeng X, Gong S, Zou Y, Liu Y (2022) Triarylboron-cored multi-donors TADF emitter with high horizontal dipole orientation ratio achieving high performance OLEDs with near 39% external quantum efficiency and small efficiency Roll-off. Chem Eng J 450:137805. https://doi.org/10.1016/j.cej.2022.137805

    Article  CAS  Google Scholar 

  70. Izumi S, Govindharaj P, Drewniak A, Crocomo PZ, Minakata S, de Sousa LE, de Silva P, Data P, Takeda Y (2022) Comparative study of thermally activated delayed fluorescent properties of donor–acceptor and donor–acceptor–donor architectures based on phenoxazine and dibenzo [a, j] phenazine. Beilstein J Organic Chem 18:459–468

    Article  CAS  Google Scholar 

  71. Data P, Pander P, Okazaki M, Takeda Y, Minakata S, Monkman AP (2016) Dibenzo[a, j]phenazine-cored donor–acceptor–donor compounds as green-to-red/NIR thermally activated delayed fluorescence organic light emitters. Angew Chem Int Ed 55:5739–5744. https://doi.org/10.1002/anie.201600113

    Article  CAS  Google Scholar 

  72. Cai Z, Chen H, Guo J, Zhao Z, Tang BZ (2020) Efficient aggregation-induced delayed fluorescence luminogens for solution-processed OLEDs with small efficiency roll-off. Front Chem 8:10. https://doi.org/10.3389/fchem.2020.00193

    Article  CAS  Google Scholar 

  73. Yang Y, Xiao R, Cao X, Chen Z, Lv X, Zhang Y, Gong S, Zou Y, Yang C (2021) Phenoxazine-dibenzothiophene sulfoximine emitters featuring both thermally activated delayed fluorescence and aggregation induced emission. Molecules 26:5243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ilmi R, Yin J, Dutra JDL, Al Rasbi NK, Oliveira WF, Zhou L, Wong WY, Raithby PR, Khan MS (2022) Single component white-OLEDs derived from tris(beta-diketonato) europium(III) complexes bearing the large bite angle N^N 2-(4-thiazolyl)benzimidazole ligand. Dalton Trans 51:14228–14242. https://doi.org/10.1039/D2DT01873J

    Article  CAS  PubMed  Google Scholar 

  75. Ilmi R, Sun W, Dutra JDL, Al-Rasbi NK, Zhou L, Qian P-C, Wong W-Y, Raithby PR, Khan MS (2020) Monochromatic red electroluminescence from a homodinuclear europium(iii) complex of a β-diketone tethered by 2,2′-bipyrimidine. J Mater Chem C 8:9816–9827. https://doi.org/10.1039/D0TC02181D

    Article  CAS  Google Scholar 

  76. Shi Y-Z, Wang K, Fan X-C, Wu H, Ou X-M, Yu J, Jie J-S, Zhang X-H (2022) Applying intermolecular hydrogen bonding to exploit TADF emitters for high-performance orange-red non-doped OLEDs. J Mater Chem C 10:4717–4722. https://doi.org/10.1039/D1TC03803F

    Article  CAS  Google Scholar 

  77. Zhou C, Chen W-C, Liu H, Cao X, Li N, Zhang Y, Lee C-S, Yang C (2020) Isomerization enhanced quantum yield of dibenzo[a, c]phenazine-based thermally activated delayed fluorescence emitters for highly efficient orange OLEDs. J Mater Chem C 8:9639–9645. https://doi.org/10.1039/D0TC01995J

    Article  CAS  Google Scholar 

  78. Hong G, Si C, Gupta AK, Bizzarri C, Nieger M, Samuel IDW, Zysman-Colman E, Bräse S (2022) Fluorinated dibenzo[a, c]-phenazine-based green to red thermally activated delayed fluorescent OLED emitters. J Mater Chem C 10:4757–4766. https://doi.org/10.1039/D1TC04918F

    Article  CAS  Google Scholar 

  79. Yang H-Y, Zhang M, Zhao J-W, Pu C-P, Lin H, Tao S-L, Zheng C-J, Zhang X-H (2022) Improving efficiency of red thermally activated delayed fluorescence emitter by introducing quasi-degenerate orbital distribution. Chin J Chem 40:911–917. https://doi.org/10.1002/cjoc.202100776

    Article  CAS  Google Scholar 

  80. Balijapalli U, Lee Y-T, Karunathilaka BSB, Tumen-Ulzii G, Auffray M, Tsuchiya Y, Nakanotani H, Adachi C (2021) Tetrabenzo[a, c]phenazine backbone for highly efficient orange-red thermally activated delayed fluorescence with completely horizontal molecular orientation. Angew Chem Int Ed 60:19364–19373. https://doi.org/10.1002/anie.202106570

    Article  CAS  Google Scholar 

  81. Chen J-X, Wang H, Zhou L, Wang K, Yu J, Zhang X-H (2022) Structure-property investigation of two red TADF isomers with different D-A conjugation for superior exciton utilization. Dyes Pigm 208:110801. https://doi.org/10.1016/j.dyepig.2022.110801

    Article  CAS  Google Scholar 

  82. Yang W, Ning W, Gong S, Yang C (2021) Deep-red thermally activated delayed fluorescence emitters based on a phenanthroline-containing planar acceptor. Dyes Pigm 192:109474. https://doi.org/10.1016/j.dyepig.2021.109474

    Article  CAS  Google Scholar 

  83. Wang B, Zheng Y, Wang T, Ma D, Wang Q (2021) 1,8-Naphthalimide-based hybrids for efficient red thermally activated delayed fluorescence organic light-emitting diodes. Org Electron 88:106012. https://doi.org/10.1016/j.orgel.2020.106012

    Article  CAS  Google Scholar 

  84. Urban M, Marek-Urban PH, Durka K, Luliński S, Pander P, Monkman AP (2023) TADF invariant of host polarity and ultralong fluorescence lifetimes in a donor-acceptor emitter featuring a hybrid sulfone-triarylboron acceptor**. Angew Chemie IntEd 62:e202217530. https://doi.org/10.1002/anie.202217530

    Article  CAS  Google Scholar 

  85. Fu Y, Liu J, Wu Z, Weigand JJ, Feng X (2020) Synthesis and characterization of AIE-active B-N-coordinated phenalene complexes. Organic Mater 02:240–247. https://doi.org/10.1055/s-0040-1715564

    Article  CAS  Google Scholar 

  86. Tsiko U, Bezvikonnyi O, Volyniuk D, Minaev BF, Keruckas J, Cekaviciute M, Jatautiene E, Andruleviciene V, Dabuliene A, Grazulevicius JV (2022) TADF quenching properties of phenothiazine or phenoxazine-substituted benzanthrones emitting in deep-red/near-infrared region towards oxygen sensing. Dyes Pigm 197:109952. https://doi.org/10.1016/j.dyepig.2021.109952

    Article  CAS  Google Scholar 

  87. Lin C, Wu Z, Liu J, Deng W-T, Zhuang Y, Xuan T, Xue J, Zhang L, Wei G, Xie R-J (2022) Extremely low efficiency roll-off in vacuum- and solution-processed deep-red/near-infrared OLEDs based on 1,8-naphthalimide TADF emitters. J Lumin 243:118683. https://doi.org/10.1016/j.jlumin.2021.118683

    Article  CAS  Google Scholar 

  88. Kim K-H, Moon C-K, Lee J-H, Kim S-Y, Kim J-J (2014) Highly Efficient organic light-emitting diodes with phosphorescent emitters having high quantum yield and horizontal orientation of transition dipole moments. Adv Mater 26:3844–3847. https://doi.org/10.1002/adma.201305733

    Article  CAS  PubMed  Google Scholar 

  89. Luo X-F, Qu Z-Z, Han H-B, Su J, Yan Z-P, Zhang X-M, Tong J-J, Zheng Y-X, Zuo J-L (2021) Carbazole-based Iridium(III) complexes for electrophosphorescence with EQE of 32.2% and low efficiency roll-off. Adv Opt Mater 9:2001390. https://doi.org/10.1002/adom.202001390

    Article  CAS  Google Scholar 

  90. Yang X, Guo H, Liu B, Zhao J, Zhou G, Wu Z, Wong W-Y (2018) Diarylboron-based asymmetric red-emitting Ir(III) complex for solution-processed phosphorescent organic light-emitting diode with external quantum efficiency above 28%. Adv Sci 5:1701067. https://doi.org/10.1002/advs.201701067

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.S.K. acknowledges His Majesty’s Trust Fund for Strategic Research (Grant no. SR/SQU/SCI/CHEM/21/01) and the Ministry of Higher Education, Research and Innovation (MoHERI), Oman (Grant no. RC/RG-SCI/CHEM/22/01) for funding. R.I. thanks HM’s Trust Fund for a postdoctoral fellowship. H.A.S. acknowledges the Ministry of Higher Education, Research & Innovation (MOHERI) for funding (Grant no. RC/GRG-SCI/CHEM/22/01) and the Ministry of Education, Oman, and SQU for a PhD scholarship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rashid Ilmi or Muhammad S. Khan.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Sharji, H., Ilmi, R. & Khan, M.S. Recent Progress in Phenoxazine-Based Thermally Activated Delayed Fluorescent Compounds and Their Full-Color Organic Light-Emitting Diodes. Top Curr Chem (Z) 382, 5 (2024). https://doi.org/10.1007/s41061-024-00450-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-024-00450-3

Keywords

Navigation