Skip to main content
Log in

Hybrid-density functional theory study on the band structures of tetradymite-Bi2Te3, Sb2Te3, Bi2Se3, and Sb2Se3 thermoelectric materials

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The low-energy band structure near the band gap determines the electrical performance of thermoelectric materials. Here, by using the hybrid-density functional theory (hybrid-DFT) calculations, we calculate the low-energy band structure of Bi2Te3, Sb2Te3, Bi2Se3 and Sb2Se3 in the tetradymite phase. We find that the band structure characteristics are very sensitive the selection of the exchange energy functional. The predictability of the band gaps and the band degeneracies is not enhanced in hybrid-DFT calculations, as compared to DFT calculations. The poor prediction of low-energy band structures originates from the poor prediction of interlayer distances and the high structure sensitivity on the band gap. We conclude that the hybrid-DFT calculations are not superior to DFT calculations when predicting band structures of tetradymite Bi2Te3, Sb2Te3, Bi2Se3 and Sb2Se3 thermoelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. Goldsmid, Introduction to Thermoelectricity (Springer, Berlin, Heidelberg, 2010).

    Book  Google Scholar 

  2. D. M. Rowe, Thermoelectrics Handbook (CRC Press, Boca Raton, 2006).

    Google Scholar 

  3. B. Ryu, B. S. Kim, J. E. Lee, S. J. Joo, B. K. Min, H. W. Lee and S. Park, J. Korean Phys. Soc. 68, 115 (2016).

    Article  ADS  Google Scholar 

  4. M. Kim, A. J. Freeman and C. B. Geller, Phys. Rev. B 72, 035205 (2005).

    Article  ADS  Google Scholar 

  5. G. Wang and T. Cagin, Phys. Rev. B 76, 075201 (2007).

    Article  ADS  Google Scholar 

  6. E. Kioupakis, M. L. Tiago and S. G. Louie, Phys. Rev. B 82, 245203 (2010).

    Article  ADS  Google Scholar 

  7. B. Y. Yavorsky, N. F. Hinsche, I. Mertig and P. Zahn, Phys. Rev. B 84, 165208 (2011).

    Article  ADS  Google Scholar 

  8. B. Ryu and M. W. Oh, J. Kor. Cer. Soc. 53, 273 (2016).

    Article  Google Scholar 

  9. J. H. Bahk and A. Shakouri, Phys. Rev. B 93, 165209 (2016).

    Article  ADS  Google Scholar 

  10. B. Ryu and K. J. Chang, Appl. Phys. Lett. 97, 242910 (2010).

    Article  ADS  Google Scholar 

  11. M. S. Hybertsen and S. G. Louie, Phys. Rev. B 34, 5390 (1986).

    Article  ADS  Google Scholar 

  12. J. M. Crowley, J. Tahr-Kheli and W. A. Goddard, J. Phys. Chem. Lett. 7, 1198 (2016).

    Article  Google Scholar 

  13. M. J. Lucero, T. M. Henderson and G. E. Scuseria, J. Phys: Cond. Matter. 24, 145504 (2012).

    ADS  Google Scholar 

  14. P. Deák, B. Aradi, T. Frauenheim, E. Janzén and A. Gali, Phys. Rev. B 81, 153203 (2010).

    Article  ADS  Google Scholar 

  15. J. Bang, Y. Y. Sun, T. A. Abtew, A. Samanta, P. Zhang and S. B. Zhang, Phys. Rev. B 88, 035134 (2013).

    Article  ADS  Google Scholar 

  16. Y. J. Oh, A. T. Lee, H.-K. Noh and K. J. Chang, Phys. Rev. B 87, 075325 (2013).

    Article  ADS  Google Scholar 

  17. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  18. G. Kresse and J. Joubert, Phys. Rev. 59, 1758 (1999).

    Article  ADS  Google Scholar 

  19. P. E. Blöchl, Phys. Rev. B 50, 1793 (1994).

    Article  Google Scholar 

  20. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  21. A. V. Krukau, O. A. Vydrov, A. F. Izmaylov and G. E. Scuseria, J. Chem. Phys. 125, 224106 (2006).

    Article  ADS  Google Scholar 

  22. W. G. Wyckoff, Crystal Structures (Wiley-Interscience, New York, 1964).

    MATH  Google Scholar 

  23. S. Nakajima, J. Phys. Chem. Solids 24, 479 (1963).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byungki Ryu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S., Ryu, B. Hybrid-density functional theory study on the band structures of tetradymite-Bi2Te3, Sb2Te3, Bi2Se3, and Sb2Se3 thermoelectric materials. Journal of the Korean Physical Society 69, 1683–1687 (2016). https://doi.org/10.3938/jkps.69.1683

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.69.1683

Keywords

PACS numbers

Navigation