Skip to main content
Log in

Prediction of the band structures of Bi2Te3-related binary and Sb/Se-doped ternary thermoelectric materials

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Density functional calculations are performed to study the band structures of Bi2Te3-related binary (Bi2Te3, Sb2Te3, Bi2Se3, and Sb2Se3) and Sb/Se-doped ternary compounds [(Bi1−x Sb x )2Te3 and Bi2(Te1−y Se y )3]. The band gap was found to be increased by Sb doping and to be monotonically increased by Se doping. In ternary compounds, the change in the conduction band structure is more significant as compared to the change in the valence band structure. The band degeneracy of the valence band maximum is maintained at 6 in binaries and ternaries. However, when going from Bi2Te3 to Sb2Te3 (Bi2Se3), the degeneracy of the conduction band minimum is reduced from 6 to 2(1). Based on the results for the band structures, we suggest suitable stoichiometries of ternary compounds for high thermoelectric performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. Goldsmid, Introduction to Thermoelectricity (Springer, Berlin, Heidelberg, 2010).

    Book  Google Scholar 

  2. D. M. Rowe, Thermoelectrics Handbook (CRC Press, Boca Raton, 2006).

    Google Scholar 

  3. L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).

    Article  ADS  Google Scholar 

  4. M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.-P. Fleurial and P. Gogna, Adv. Mater. 19, 1043 (2007).

    Article  Google Scholar 

  5. J. M. O. Zide, D. Vashaee, Z. X. Bian, G. Zeng, J. E. Bowers, A. Shakouri and A. C. Gossard, Phys. Rev. B 74, 205335 (2006).

    Article  ADS  Google Scholar 

  6. S. V. Faleev and F. Léonard, Phys. Rev. B 77, 214304 (2008).

    Article  ADS  Google Scholar 

  7. G. D. Mahan and J. O. Sofo, Proc. Natl. Acad. Sci. U.S.A. 93, 7436 (1996).

    Article  ADS  Google Scholar 

  8. J. P. Heremans, V. Jovovic, E. S. Toberer, E. A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka and G. J. Snyder, Science 321, 554 (2008).

    Article  ADS  Google Scholar 

  9. G. J. Snyder and E. S. Toberer, Nature Mater. 7, 105 (2008).

    Article  ADS  Google Scholar 

  10. T. J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J. V. Badding and J. O. Sofo, Phys. Rev. B 68, 125210 (2003).

    Article  ADS  Google Scholar 

  11. M. W. Oh, D. M. Wee, S. D. Park, B. S. Kim and H. W. Lee, Phys. Rev. B 77, 165119 (2008).

    Article  ADS  Google Scholar 

  12. S. Feng, S. Li, X. Li and H. Fu, Comp. Mater. Sci. 95, 563 (2014).

    Article  Google Scholar 

  13. Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen and G. J. Snyder, Nature (London) 473, 66 (2011).

    Article  ADS  Google Scholar 

  14. W. Liu, X. Tan, K. Yin, H. Liu, X. Tang, J. Shi, Q. Zhang and C. Uher, Phys. Rev. Lett. 108, 166601 (2012).

    Article  ADS  Google Scholar 

  15. J.-H. Lee, J. Wu and J. C. Grossman, Phys. Rev. Lett. 104, 016602 (2010).

    Article  ADS  Google Scholar 

  16. L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid and G. Kanatzidis, Nature (London) 508, 373 (2014).

    Article  ADS  Google Scholar 

  17. D. T. Morelli, V. Jovovic and J. P. Heremans, Phys. Rev. Lett. 101, 035901 (2008).

    Article  ADS  Google Scholar 

  18. B. Abeles, Phys. Rev. 131, 1906 (1963).

    Article  ADS  Google Scholar 

  19. M. C. Steele and F. D. Rosi, J. Appl. Phys. 29, 1517 (1958).

    Article  ADS  Google Scholar 

  20. J. Garg, N. Bonini, B. Kozinsky and N. Marzari, Phys. Rev. Lett. 106, 045901 (2011).

    Article  ADS  Google Scholar 

  21. K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis and M. G. Kanatzidis, Science 303, 818 (2004).

    Article  ADS  Google Scholar 

  22. W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri and A. Majumdar, Phys. Rev. Lett. 96, 045901 (2006).

    Article  ADS  Google Scholar 

  23. B. Poudel et al., Science 320, 634 (2008).

    Article  ADS  Google Scholar 

  24. K. Biswas, J. He, I. D. Blum, C.-I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid and M. G. Kanatzidis, Nature (London) 489, 414 (2012).

    Article  ADS  Google Scholar 

  25. R. J. Korkosz et al., J. Am.Chem. Soc. 136, 3225 (2014).

    Article  Google Scholar 

  26. H. Wang et al., Proc. Natl. Acad. Sci. U.S.A. 111, 10949 (2014).

    Article  ADS  Google Scholar 

  27. J.-S. Rhyee, K. H. Lee, S. M. Lee, E. Cho, S. I. Kim, E. Lee, Y. S. Kwon, J. H. Shim and G. Kotliar, Nature (London) 459, 965 (2009).

    Article  ADS  Google Scholar 

  28. S. Cho, Y. Kim, A. DiVenere, G. K. Wong, J. B. Ketterson and J. R. Meyer, Appl. Phys. Lett. 75, 1401 (1999).

    Article  ADS  Google Scholar 

  29. D. West, Y. Y. Sun, H. Wang, J. Bang and S. B. Zhang, Phys. Rev. B 86, 121201(R) (2012).

    Article  ADS  Google Scholar 

  30. J. H. Son, M. W. Oh, B. S. Kim, S. D. Park, B. K. Min, M. H. Kim and H. W. Lee, J. Alloys Comp. 566, 168 (2013).

    Article  Google Scholar 

  31. M. W. Oh, J. H. Son, B. S. Kim, S. D. Park, B. K. Min and H. W. Lee, J. Appl. Phys. 115, 133706 (2014).

    Article  ADS  Google Scholar 

  32. G.-E. Lee, I.-H. Kim, S.-M. Choi, Y. S. Lim, W.-S. Seo, J.-S. Park and S.-H. Yang, J. Korean Phys. Soc. 65, 2066 (2014).

    Article  ADS  Google Scholar 

  33. G.-E. Lee, I.-H. Kim, S.-M. Choi, Y. S. Lim, W.-S. Seo, J.-S. Park and S.-H. Yang, J. Korean Phys. Soc. 65, 1908 (2014).

    Article  ADS  Google Scholar 

  34. P. Larson, S. D. Mahanti, M. G. Kanatzidis, Phys. Rev. B 61, 8162 (2000).

    Article  ADS  Google Scholar 

  35. S. J. Youn and A. J. Freeman, Phys. Rev. B 63, 085112 (2001).

    Article  ADS  Google Scholar 

  36. M. Kim, A. J. Freeman, C. B. Geller, Phys. Rev. B 72, 035205 (2005).

    Article  ADS  Google Scholar 

  37. S. Lee and P. von Allmen, Appl. Phys. Lett. 88, 022107 (2006).

    Article  ADS  Google Scholar 

  38. P. Larson, Phys. Rev. B 74, 205113 (2006).

    Article  ADS  Google Scholar 

  39. G. Wang and T. Cagin, Phys. Rev. B 76, 075201 (2007).

    Article  ADS  Google Scholar 

  40. E. Kioupakis, M. L. Tiago and S. G. Louie, Phys. Rev. B 82, 245203 (2010).

    Article  ADS  Google Scholar 

  41. B. Y. Yavorsky, N. F. Hinsche, I. Mertig and P. Zahn, Phys. Rev. B 84, 165208 (2011).

    Article  ADS  Google Scholar 

  42. N. F. Hinsche, B. Y. Yavorsky, I. Mertig and P. Zahn, Phys. Rev. B 84, 165214 (2011).

    Article  ADS  Google Scholar 

  43. D. Parker and D. J. Singh, Phys. Rev. X 1, 021005 (2011).

    Google Scholar 

  44. O. V. Yazyev, E. Kioupakis, J. E. Moore and S. G. Louie, Phys. Rev. B 85, 161101(R) (2012).

    Article  ADS  Google Scholar 

  45. X. Luo, M. B. Sullivan and S. Y. Quek, Phys. Rev. B 86, 184111 (2012).

    Article  ADS  Google Scholar 

  46. I. A. Nechaev and E. V. Chulkov, Phys. Rev. B 88, 165135 (2013).

    Article  ADS  Google Scholar 

  47. H. Y. Lv, H. J. Liu, L. Pan, Y. W. Wen, X. J. Tan, J. Shi and X. F. Tang, Appl. Phys. Lett. 96, 142101 (2010).

    Article  ADS  Google Scholar 

  48. M. S. Park, J.-W. Song, J. E. Medvedeva, M. Kim, I. G. Kim and A. J. Freeman, Phys. Rev. B 81, 155211 (2010).

    Article  ADS  Google Scholar 

  49. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  50. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  51. L. Bellaiche and D. vanderbilt, Phys. Rev. B 61, 7877 (2000).

    Article  ADS  Google Scholar 

  52. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  53. P. E. Blöchl, Phys. Rev. B 50, 1793 (1994).

    Article  Google Scholar 

  54. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  55. G. Kresse and J. Joubert, Phys. Rev. 59, 1758 (1999).

    Article  ADS  Google Scholar 

  56. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  57. R. Sehr and L. R. Testardi, J. Phys. Chem. Sol. 23, 1219 (1962).

    Article  ADS  Google Scholar 

  58. H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang and S.-C. Zhang, Nature Phys. 5, 438 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byungki Ryu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, B., Kim, BS., Lee, J.E. et al. Prediction of the band structures of Bi2Te3-related binary and Sb/Se-doped ternary thermoelectric materials. Journal of the Korean Physical Society 68, 115–120 (2016). https://doi.org/10.3938/jkps.68.115

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.68.115

Keywords

Navigation