Skip to main content
Log in

Experimental investigation of the decrease in the quality factor and calculation of the mechanical properties of quartz tuning forks from analogous electrical parameters

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Quartz tuning forks (QTFs) are being more frequently adopted instead of micromachined cantilevers as force sensors in scanning probe microscopes due to their mechanical stability, high quality factors, and wide availability at low costs. Mass-produced QTFs are typically housed in vacuumsealed canisters, and this necessitates the removal of the vacuum canisters to make necessary modifications such as attaching a tip or an optical fiber. Commonly, the decrease in the quality factor after the removal of the canister is attributed to an increase in air damping with no further investigation of other possible causes. We carried out several experiments with QTFs before and after the canisters were removed. Despite a vacuum level below 10 −5 Torr, all investigated QTFs exhibited decreased quality factors once the protective canisters had been removed. We present possible causes for this observation by analyzing optical microscope images. Also, complete mechanical and electrical characterizations of the QTFs are presented, taking advantage of the analogies that exist between mechanical and electrical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-M. Friedt and É. Carry, Am. J. Phys. 75, 415 (2007).

    Article  ADS  Google Scholar 

  2. H. Edwards, L. Taylor and W. Duncan, J. Appl. Phys. 82, 980 (1997).

    Article  ADS  Google Scholar 

  3. A. Castellanos-Gomez, N. Agraït and G. Rubio-Bollinger, Nanotechnol. 20, 215502 (2009).

    Article  ADS  Google Scholar 

  4. J. Rychen, T. Ihn, P. Studerus, A. Herrmann and K. Ensslin, Rev. Sci. Instrum. 71, 1695 (2000).

    Article  ADS  Google Scholar 

  5. F. J. Giessibl, Rev. Mod. Phys. 75, 949 (2003).

    Article  ADS  Google Scholar 

  6. F. J. Giessibl, Appl. Phys. Lett. 76, 1470 (2000).

    Article  ADS  Google Scholar 

  7. P. Günther, U. Fischer and K. Dransfeld, Appl. Phys. B: Photophys. Laser Chem. 48, 89 (1989).

    Article  ADS  Google Scholar 

  8. K. Karrai and R. D. Grober, Appl. Phys. Lett. 66, 1842 (1995).

    Article  ADS  Google Scholar 

  9. K. Karrai and I. Tiemann, Phys. Rev. B 62, 13174 (2000).

    Article  ADS  Google Scholar 

  10. W. A. Atia and C. C. Davis, Appl. Phys. Lett. 70, 405 (1997).

    Article  ADS  Google Scholar 

  11. A. G. T. Ruiter, J. A. Veerman, K. O. van der Werf and N. F. van Hulst, Appl. Phys. Lett. 71, 28 (1997).

    Article  ADS  Google Scholar 

  12. A. G. T. Ruiter, K. O. van der Werf, J. A. Veerman, M. F. Garcia-Parajo, W. H. J. Rensen and N. F. van Hulst, Ultramicroscopy 71, 149 (1998).

    Article  Google Scholar 

  13. F. J. Giessibl, Appl. Phys. Lett. 73, 3956 (1989).

    Article  ADS  Google Scholar 

  14. J. Rychen, T. Ihn, A. Herrmann and K. Ensslin, Rev. Sci. Instrum. 70, 2765 (1999).

    Article  ADS  Google Scholar 

  15. J. Rychen, T. Ihn, P. Studerus, A. Herrmann, K. Ensslin, H. J. Hug, P. J. A. Van Schendel and H. J. Güntherodt, Appl. Surf. Sci. 157, 290 (2000).

    Article  ADS  Google Scholar 

  16. K. S. Van Dyke, Phys. Rev. 25, 895 (1925).

    Google Scholar 

  17. A. Arnau, T. Sogorb and Y. Jiménez, Rev. Sci. Instrum. 71, 2563 (2000).

    Article  ADS  Google Scholar 

  18. D. W. Dye, Proc. Phys. Soc. London 38, 399 (1926).

    Article  Google Scholar 

  19. Y. Tomikawa, H. Miura and S. B. Dong, IEEE T. Son. Ultrason. SU-25, 206 (1978).

    Google Scholar 

  20. Sang-Hun Song, Rev. Sci. Instrum. 80, 034703 (2009).

    Article  ADS  Google Scholar 

  21. Y. Qin and R. Reifenberger, J. Nanosci. Nanotechnol. 6, 3455 (2006).

    Article  Google Scholar 

  22. G. Otero, L. Gonzalez and M. Puig-Vidal, Sensors 12, 4803 (2012).

    Article  Google Scholar 

  23. R. Oria, J. Otero, L. Gonzalez, L. Botaya, M. Carmona and M. Puig-Vidal, Sensors 13, 7156 (2013).

    Article  Google Scholar 

  24. T. Duden and V. Radmilovic, Rev. Sci. Instrum. 80, 023706 (2009).

    Article  ADS  Google Scholar 

  25. Y. Qin and R. Reifenberger, Rev. Sci. Instrum. 78, 063704 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Joong Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, N., Park, Sj., Lee, Y.J. et al. Experimental investigation of the decrease in the quality factor and calculation of the mechanical properties of quartz tuning forks from analogous electrical parameters. Journal of the Korean Physical Society 67, 733–737 (2015). https://doi.org/10.3938/jkps.67.733

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.67.733

Keywords

Navigation