Skip to main content
Log in

High Q value Quartz Tuning Fork in Vacuum as a Potential Thermometer in Millikelvin Temperature Range

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The results of a newly developed pulse-demodulation (P-D) technique introduced to determine the resonant characteristics of a high Q value quartz tuning forks in vacuum and millikelvin temperature range are presented. Applying P-D technique to a standard 32 kHz quartz tuning fork with extremely low excitation energy of the order of a few femtojoules, we were able to measure the resonance frequency of the fork’s decay signal with resolution better than 10 \(\upmu \)Hz. Using this highly sensitive measurement technique, we found a continuous and reproducible temperature dependence of the tuning fork’s resonance frequency in the millikelvin temperature range. The observed dependence suggests a potential application for the quartz tuning forks to be used as thermometers in the millikelvin temperature range. We also discuss the physical origin of the observed phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D.O. Clubb et al., J. Low Temp. Phys. 136, 1 (2004). doi:10.1023/B:JOLT.0000035368.63197.16

    Article  ADS  Google Scholar 

  2. R. Blaauwgeers et al., J. Low Temp. Phys. 146, 537 (2007). doi:10.1007/s10909-006-9279-4

    Article  ADS  Google Scholar 

  3. M. Blažková et al., J. Low Temp. Phys. 150, 525 (2008). doi:10.1007/s10909-007-9587-3

    Article  ADS  Google Scholar 

  4. D.I. Bradley, M. Človečko, E. Gažo, P. Skyba, J. Low Temp. Phys. 152, 147 (2008). doi:10.1007/s10909-008-9815-5

    Article  ADS  Google Scholar 

  5. D.I. Bradley et al., J. Low Temp. Phys. 156, 116 (2009). doi:10.1007/s10909-009-9901-3

    Article  ADS  Google Scholar 

  6. D.I. Bradley et al., J. Low Temp. Phys. 157, 476 (2009). doi:10.1007/s10909-009-9982-z

    Article  ADS  Google Scholar 

  7. M. Blažková et al., J. Low Temp. Phys. 148, 305 (2007). doi:10.1007/s10909-007-9389-7

    Article  ADS  Google Scholar 

  8. A.P. Sebedash, J.T. Tuoriniemi, E.M.M. Pentti, A.J. Salmela, J. Low Temp. Phys. 150, 181 (2008). doi:10.1007/s10909-007-9535-2

  9. E.M.M. Pentti, J.T. Tuoriniemi, A.J. Salmela, A.P. Sebedash, J. Low Temp. Phys. 150, 555 (2008). doi:10.1007/s10909-007-9583-7

  10. I.A. Gritsenko et al., J. Low Temp. Phys. 158, 450 (2010). doi:10.1007/s10909-009-9950-7

    Article  ADS  Google Scholar 

  11. V.B. Efimov, D. Garg, O. Kolosov, P.V.E. McClintock, J. Low Temp. Phys. 158, 456 (2010). doi:10.1007/s10909-009-0026-5

    Article  ADS  Google Scholar 

  12. M. Človečko et al., J. Low Temp. Phys. 162, 669 (2011). doi:10.1007/s10909-010-0330-0

    Article  Google Scholar 

  13. J. Rychen et al., Rev. Sci. Instrum. 70, 2765 (1999). doi:10.1063/1.1149842

    Article  ADS  Google Scholar 

  14. R.D. Grober et al., Rev. Sci. Instrum. 71, 2776 (2000). doi:10.1063/1.1150691

    Article  ADS  Google Scholar 

  15. Y. Seo, P. Cadden-Zimansky, V. Chandrasekhar, Appl. Phys. Lett. 87, 103103 (2005). doi:10.1063/1.2037852

    Article  ADS  Google Scholar 

  16. A. Castellanos-Gomez, N. Agraït, G. Rubio-Bollinger, Nanotechnology 20, 215502 (2009). doi:10.1088/0957-4484/20/21/215502

    Article  ADS  Google Scholar 

  17. K.L. Ekinci, M.L. Roukes, Rev. Sci. Instrum. 76, 061101 (2005). doi:10.1063/1.1927327

  18. E. Collin, Yu.M. Bunkov, H. Godfrin, Phys. Rev. B 82, 235416 (2010). doi:10.1103/PhysRevB.82.235416

  19. M. Človečko et al., J. Low Temp. Phys. 175, 449 (2014). doi:10.1007/s10909-013-0936-0

    Article  Google Scholar 

  20. M. Sansa et al., Nature Nanotechnol. 11, 552 (2016). doi:10.1038/nnano.2016.19

    Article  ADS  Google Scholar 

  21. L.G. Remus, M.P. Blencowe, Y. Tanaka, Phys. Rev. B 80, 174103 (2009). doi:10.1103/PhysRevB.80.174103

    Article  ADS  Google Scholar 

  22. B.H. Schneider et al., Nat. Commun. 5, 5819 (2014). doi:10.1038/ncomms6819

    Article  Google Scholar 

  23. O. Maillet et al., New J. Phys. 18, 073022 (2016). doi:10.1088/1367-2630/18/7/073022

    Article  ADS  Google Scholar 

  24. B. Cowan, Nuclear Magnetic Resonance and Relaxation (Cambridge University Press, Cambridge, 2005), p. 55

    Google Scholar 

  25. P. Skyba, J. Low Temp. Phys. 160, 219 (2010). doi:10.1007/s10909-010-0189-0

    Article  ADS  Google Scholar 

  26. S. Holt, P. Skyba, Rev. Sci. Instrum. 83, 064703 (2012). doi:10.1063/1.4725526

    Article  ADS  Google Scholar 

  27. I.G. Main, Vibrations and Waves in Physics, 2nd edn. (Cambridge University Press, Cambridge, 1984), p. 35

    MATH  Google Scholar 

  28. J. Tersoff, Phys. Rev. Lett. 52, 465 (1984). doi:10.1103/PhysRevLett.52.465

    Article  ADS  Google Scholar 

  29. L.D. Landau, E.M. Lifshitz, Theory of Elasticity. 3rd English edn. Revised and Enlarged (Pergamon Press, Oxford, 1986), p. 99

  30. M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Clarendon Press, Oxford, 1962), p. 322

    Google Scholar 

  31. B.K. Ridley, Quantum Processes in Semiconductors, 5th edn. (Oxford University Press, Oxford, 2013), p. 418

    Book  MATH  Google Scholar 

  32. K.P. O’Donnell, X. Chen, Appl. Phys. Lett 58, 2924 (1991). doi:10.1063/1.104723

Download references

Acknowledgement

We acknowledge support of APVV-14-0605, APVV-0515-10, VEGA 2/0157/14, ITMS 2622012005 - EXTREM and partially by FP7 228464 - MICROKELVIN - European Microkelvin Collaboration Platform (former project of 7. FP of EU - Microkelvin). Support provided by the US Steel Košice s.r.o. is also very appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Vavrek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Človečko, M., Grajcar, M., Kupka, M. et al. High Q value Quartz Tuning Fork in Vacuum as a Potential Thermometer in Millikelvin Temperature Range. J Low Temp Phys 187, 573–579 (2017). https://doi.org/10.1007/s10909-016-1696-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-016-1696-4

Keywords

Navigation