Skip to main content
Log in

Synthesis and physical properties of zinc-oxide textured films by using a filtered preheated hydrothermal

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Axially (c-axis)-oriented ZnO thick films with a ∼8.1 μm thickness were fabricated on ZnO seed layer coated substrates by using a filtered preheated hydrothermal solution. The thick films composed of single-crystal ZnO microrods with various diameters were formed by coalescing each nanorod together along their side surfaces. From the X-ray diffraction result a biaxial stress exists was found to exist in the as-grown thick films, and the stress gradually increased with increasing annealing temperatures from 200 to 550 °C due to a degradation in the crystalline quality. The biaxial stress is responsible for the red-shift of the optical band gap of the ZnO thick films. Photoluminescence and Hall results revealed that the optical and the electrical properties of the thick films were degenerated after high-temperature annealing (> 200 °C), which was due to the introduction of point defects, such as oxygen interstitials and zinc vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Wang and L. Zhang, Mater. Lett. 63, 301 (2009).

    Article  MATH  Google Scholar 

  2. B. Wen, Y. Huang, J. J. Boland, J. Phys. Chem. C 112, 106 (2008).

    Google Scholar 

  3. A. L. Ding, X. Y. He, P. S. Qui, S. J. Wang and W. G. Luo, Proceedings of the 2000 12th IEEE International Symposium on Applications of Ferroelectrics, edited by S. K. Streiffer, B. J. Gibbons, T. Tsurumi, and M. A. Zurbuchen (Hawaii, U.S.A., July 21–August 2, 2000), p. 515.

  4. G. R. Li et al., Electrochem. Comm. 9, 863 (2007).

    Article  Google Scholar 

  5. J. H. Kim et al., Adv. Funct. Mater. 17, 463 (2007).

    Article  Google Scholar 

  6. Y. Zhang, F. Lu, Z. Wang and L. Zhang, J. Phys. Chem. C 111, 4519 (2007).

    Article  Google Scholar 

  7. J. M. Dreyfors, S. B. Jones and Y. Sayed, Am. Ind. Hyg. Assoc. J. 50, 579 (1989).

    Article  Google Scholar 

  8. J. Qiu et al., Nanotechnology 20, 155603 (2009).

    Article  ADS  Google Scholar 

  9. X. Yan, Z. Li, R. Chen and W. Gao, Cryst. Growth Des. 8, 2407 (2007).

    Google Scholar 

  10. K. Govender, D. S. Boyle, P. B. Kenway, P. O’Brien, J. Mater. Chem. 14, 2575 (2004).

    Article  Google Scholar 

  11. A. Sugunan, H. C. Warad, M. Boman and J. Dutta, J. Sol-Gel Sci. Techn. 39, 49 (2006).

    Article  Google Scholar 

  12. J. F. Zang et al., Electroanal. 19, 1008 (2007).

    Article  Google Scholar 

  13. J. Joo, B. Y. Chow, M. Prakash, E. S. Boyden and J. M. Jacobson, Nat. Mater. 10, 596 (2011).

    Article  ADS  Google Scholar 

  14. B. Y. Oh, M. C. Jeong, D. S. Kim, W. Lee and J. M. Myoung, J. Cryst. Growth 281, 475 (2005).

    Article  ADS  Google Scholar 

  15. Z. B. Fang, Z. J. Yan, Y. S. Tan, X. Q. Liu and Y. Y. Wang, Appl. Surf. Sci. 241, 303 (2005).

    Article  ADS  Google Scholar 

  16. M. Wang, J. Wang, W. Chen, Y. Cui and L. Wang, Mater. Chem. Phys. 97, 219 (2006).

    Article  Google Scholar 

  17. B. L. Zhu et al., Jpn. J. Appl. Phys. 45, 7860 (2006).

    Article  ADS  Google Scholar 

  18. A. B. Djurišić et al., Nanotechnology 18, 095702 (2007).

    Article  ADS  Google Scholar 

  19. M. Suchea, S. Christoulakis, M. Katharakis, N. Vidakis and E. Koudoumas, Thin Solid Films 517, 4303 (2009).

    Article  ADS  Google Scholar 

  20. R. Ghosh, D. Basak and S. Fujihara, J. Appl. Phys. 96, 2689 (2004).

    Article  ADS  Google Scholar 

  21. Y. F. Li et al., Appl. Phys. Lett. 91, 021915 (2007).

    Article  ADS  Google Scholar 

  22. Y. F. Li et al., J. Appl. Phys. 104, 083516 (2008).

    Article  ADS  Google Scholar 

  23. L. E. Greene et al., Angew. Chem. Int. Ed. 42, 3031 (2003).

    Article  Google Scholar 

  24. R. B. M. Cross, M. M. D. Souza and E. M. S. Narayanan, Nanotechnology 16, 2188 (2005).

    Article  ADS  Google Scholar 

  25. H. Zhou, H. Alves, D. M. Hofmann, W. Kriegseis and B. K. Meyer, Appl. Phys. Lett. 80, 210 (2002).

    Article  ADS  Google Scholar 

  26. A. B. Djurišić et al., Nanoscale Phenomena 2, 117 (2007).

    Google Scholar 

  27. H. T. Ng et al., Appl. Phys. Lett. 82, 2023, (2003).

    Article  ADS  Google Scholar 

  28. Q. X. Zhao et al., Appl. Phys. Lett. 87, 211912 (2005).

    Article  ADS  Google Scholar 

  29. A. B. Djurišić et al., Adv. Funct. Mater. 14, 856 (2004).

    Article  Google Scholar 

  30. J. L. Zhao, X. M. Li, J. M. Bian, W. D. Yu and C. Y. Zhang, Thin Solid Films 515, 1763 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyung-Kook Kim or Yoon-Hwae Hwang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, J., Shin, DM., He, W. et al. Synthesis and physical properties of zinc-oxide textured films by using a filtered preheated hydrothermal. Journal of the Korean Physical Society 65, 1423–1429 (2014). https://doi.org/10.3938/jkps.65.1423

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.65.1423

Keywords

Navigation