Skip to main content
Log in

Optical Methods of Diagnostics of the Isotopic Composition of Natural and Technological Media: A Review

  • OPTICAL METHODS OF HIGH-PRECISION APPLIED DIAGNOSTICS
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

The studies of the isotope ratios of earth-abundant stable elements by the classical and laser optical methods are reviewed. These methods have been actively developed in recent years. Supplementing the well-known mass-spectrometric and chromatographic techniques, they are in some respects simpler, more efficient, and not inferior in accuracy. Actually, the case in point is a new class of methods of spectral analysis for gases of complex composition, with enhanced requirements for the selectivity, accuracy, and dynamic range. The technique and results of studying the isotope ratios are discussed. Examples of real applications of these methods are presented, which demonstrate their efficiency in the fields of environmental protection, geophysics, physics of plasma, power engineering, commercial production monitoring, and medical diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. Great Russian Encyclopedia. The Earth (Russian Encyclopedia, Moscow, 2004–2017) [in Russian].

  2. G. A. Zilov, Chemistry of Environment (Irkutsk Gos. Univ., Irkutsk, 2006) [in Russian].

    Google Scholar 

  3. N. F. Pivovarova, Biosphere and People: A Handbook (Novosibirsk Gos. Ped. Univ., Novosibirsk, 1998) [in Russian].

    Google Scholar 

  4. T. B. Coplien, “Reporting of stable hydrogen, carbon and oxygen isotopic abundances (technical report),” Pure Appl. Chem.66 (2), 273 (1994).

    Article  Google Scholar 

  5. D. C. Coleman and B. Fry, Carbon Isotope Techniques (Academic Press, San Diego, 1991), p. 158.

    Google Scholar 

  6. E. M. Galimov, Geochemistry of Stable Carbon Isotopes (Nedra, Moscow, 1968) [in Russian].

    Google Scholar 

  7. E. M. Galimov, Nature of Biological Fractionation of Isotopes (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  8. Isotopes, Ed. by V. Yu. Baranov (Fizmatlit, Moscow, 2005). Vols. 1, 2 [in Russian].

    Google Scholar 

  9. J. Bigeleisen, “The effect of isotopic compositions on the rates of chemical reactions,” J. Chem. Phys.56, 823 (1952).

    Article  Google Scholar 

  10. A. I. Brodskii, Chemistry of Isotopes (Akad. Nauk SSSR, Moscow, 1957) [in Russian].

    Google Scholar 

  11. D. Groth and P. Harteck, “Versuche zur Trennung isotoper Moleküle in einer Gleichstrom-Glimmentladung,” Naturwissenhaften.27, 390 (1939).

    Article  ADS  Google Scholar 

  12. Y. Matsumura and T. Abe, “Neon-isotope separation by cataphoresis in a dc gas discharge,” Jpn. J. Appl. Phys.19, L457 (1980).

    Article  ADS  Google Scholar 

  13. A. I. Karchevski and E. P. Potanin, “Doppler and time-flow broadening in the isotopes separation in plasma with the ICR,” Plasma Phys. Rep.20, 520–522 (1994).

    Google Scholar 

  14. Ch. D. Keeling, “The concentration and isotopic abundances of carbon dioxide in rural and marine air,” Geochim. Cosmochim. Acta.24 (3-4), 277–298 (1961).

    Article  ADS  Google Scholar 

  15. F. Besacier, R. Guilliy, J. L. Brazier, H. Chaudron-Thozet, J. Girard, and F. Lamotte, “Isotopic analysis of 13C as a tool for comparison and origin assignment of seixed heroin samples,” J. Forensic Sci.42, 429–433 (1997).

    Article  Google Scholar 

  16. E. M. Galimov, V. S. Sevast’yanov, E. V. Kul’bachevskaya, and A. A. Golyavin, “Geography identification of the origin of narcotics based on the isotopic analysis of carbon and nitrogen,” Mass-Spektrom.1 (1), 31 (2004) [in Russian].

    Google Scholar 

  17. A. D. Esikov, Isotope Hydrology of Geothermal Systems (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  18. Sh. A. Magomedov, A. Sh. Magomedov, and G. S. Rasulov, “The use of variation in the isotopic composition of hydrogen and oxygen water for studying geothermal deposits,” in Proceedings of the 2nd International Conference “Renewable Power Engineering: Problems and Prospects” (Makhachkala,2010), pp. 194–198 [in Russian].

  19. W. Dansgaard, “Stable isotopes in precipitation,” Tellus.5, 436–468 (1964).

    ADS  Google Scholar 

  20. A. N. Salamatin, V. Ya. Lipenkov, I. N. Barkov, J. Jouzel, J. R. Petit, and D. Raynaud, “Ice core age dating and paleothermometer calibration based on isotope and temperature profiles from deep boreholes at Vostok Station (East Antarctica),” J. Geophys. Res.103 (D8), 8963–8977 (1998).

    Article  ADS  Google Scholar 

  21. I. P. Montañez, N. J. Tabor, D. Niemeier, W. A. DiMichele, T. D. Frank, C. R. Fielding, J. L. Isbell, L. P. Birgenheier, and M. C. Ryge, “CO2-forced climate and vegetation instability during late paleozoic deglaciation,” Science.315, 87–91 (2007).

    Article  ADS  Google Scholar 

  22. M. Tokarev, “Isotopic composition of humans,” http://www.textronica.com/

  23. G. A. Kalabin, M. I. Tokarev, and Yu. S. Khodeev, “Mass spectrometry of stable isotopes in monitoring of authenticity, quality, and state of biological objects,” http://rec.ipos.rsu.ru/education/Int_conf2001/p_159.htm

  24. V. Yu. Baranov, V. G. Grishina, E. S. Marchenkov, V. I. Nevmerzhitskii, and E. B. Svirshchevskii, “Isotope breath test: New possibilities for medical diagnostics,” Preprint No. IAE 6185/14 (National Res. Centre “Kurchatov Institute”, Moscow, 2000) [in Russian].

  25. E. V. Stepanov, Diode Laser Spectroscopy and Analysis of Biomarker Molecules (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  26. W. Wong, D. Hachey, S. Zhang, and L. Clarke, “Accuracy and precision of gas chromatography/combustion isotope ratio mass spectrometry for stable carbon isotope ratio measurements,” Rapid Commun. Mass Spectrom.9, 1007–1011 (1995).

    Article  ADS  Google Scholar 

  27. Z. Muccio and G. P. Jackson, “Isotope ratio mass spectrometry,” Analyst.134, 213–222 (2009).

    Article  ADS  Google Scholar 

  28. C. Wang, “Plasma-cavity ringdown spectroscopy (P-CRDS) for elemental and isotopic measurements,” J. Anal. At. Spectrom.22, 1347–1363 (2007).

    Article  Google Scholar 

  29. V. N. Ochkin, N. G. Preobrazhenskii, N. N. Sobolev, and N. Ya. Shaparev, “Optogalvanic effect in plasmas and gases,” Phys.-Usp.29 (3), 260–280 (1986).

    Google Scholar 

  30. A. V. Bernatskiy, I. V. Kochetov, and V. N. Ochkin, “Multispectral actinometry of water and water-derivative molecules in moist, inert gas discharge plasmas,” J. Phys. D: Appl. Phys.49, 395204 (2016).

    Article  Google Scholar 

  31. A. V. Bernatskiy, I. V. Kochetov, and V. N. Ochkin, “Transformations of neutral particles in the discharge plasma in inert gases with water vapor and deuterium,” Phys. Plasmas.25 (8), 083517 (2018).

    Article  ADS  Google Scholar 

  32. A. V. Bernatskiy, V. V. Lagunov, and V. N. Ochkin, “Measurement of the concentration of isotopes of water molecules in a discharge in an inert gas with the addition of H2O and D2 vapours by external-cavity diode laser spectroscopy,” Quantum Electron.49 (2), 157–161 (2019).

    Article  ADS  Google Scholar 

  33. E. Kerstel, “Isotope ratio infrared spectrometry”, in Handbook of Stable Isotope Analytical Techniques, Ed. by P. A. de Groot (Elsevier, 2004). Ch. 34.

    Google Scholar 

  34. L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. V. Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: Edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer.82, 5 (2003).

    Article  ADS  Google Scholar 

  35. L. S. Rothman, D. Jacument, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, J.-Y. Mandin, A. G. Maki, S. T. Massie, D. A. Newnham, J. Orphal, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, J. Tennyson R. N. Tolchenov, R. A. Toth, J. V. Auwera, P. Varanasi, and G. Wagner. “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer.96, 139 (2005).

    Article  ADS  Google Scholar 

  36. MolexplorerTM, http://www.pas-tech.de/pdf/MolExplorer_Manual.pdf (2010).

  37. N. Jacquinet-Husson, N. A. Scott, A. Chédin, L. Crépeau, R. Armante, V. Capelle, J. Orphal, A. Coustenis, C. Boonne, N. Poulet-Crovisier, A. Barbe, M. Birk, R. L. Brown, C. Camy-Peyret, C. Claveau, K. Chance, N. Christidis, C. Clerbaux, P. F. Coheur, V. Dana, L. Daumont, M. R. De Backer-Barilly, G. Di Lonardo, J. M. Flaud, A. Goldman, A. Hamdouni, M. Hess, M. D. Hurley, D. Jacquemart, I. Kleiner, P. Köpke, J. Y. Mandin, S. Massie, S. Mikhailenko, V. Nemtchinov, A. Nikitin, D. Newnham, A. Perrin, V. I. Perevalov, S. Pinnock, L. Régalia-Jarlot, C. P. Rinsland, A. Rublev, F. Schreier, L. Schult, K. M. Smith, S. A. Tashkun, J. L. Teffo, R. A. Toth, Vl. G. Tyuterev, J. Vander Auwera, P. Varanasi, and G. Wagner, “The GEISA spectroscopic database: Current and future archive for Earth and planetary atmosphere studies,” J. Quant. Spectrosc. Radiat. Transfer.109, 1043–1059 (2008).

    Article  ADS  Google Scholar 

  38. H. S. P. Müller, F. Schlöder, J. Stutzki, and G. Winnewisse, “The cologne database for molecular spectroscopy, CDMS: A useful tool for astronomers and spectroscopists,” J. Mol. Struct.742, 215–227 (2005).

    Article  ADS  Google Scholar 

  39. H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Müller, “Submillimeter, millimeter, and microwave spectral line catalog,” J. Quant. Spectrosc. Radiat. Transfer.60, 883–890 (1998).

    Article  ADS  Google Scholar 

  40. L. S. R. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peuret, V. Dana, J.-M. Mandin, J. Shroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chabce, K. W. Jucs, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer.60, 665 (1998).

    Article  ADS  Google Scholar 

  41. R. A. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee, K. Fox, L. S. Rothman, and J. S. Garing, “AFCRL atmospheric absorption line parameters compilation,” AFCRL-TR-73-0096. No 434 (1973).

  42. G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules (Krieger, N.Y., 1945).

    Google Scholar 

  43. W. J. Witteman, Detection and Signal Processing (Springer, 2006).

    Google Scholar 

  44. S. N. Andreev, E. S. Mironchuk, I. V. Nikolaev, V. N. Ochkin, M. V. Spiridonov, and S. N. Tskhai, “High precision measurements of the 13CO2/12CO2 isotope ratio at atmospheric pressure in human breath using a 2 μm diode laser,” Preprint FIAN No. 8 (Lebedev Physical Institute, Russian Academy of Sciences, 2011) [in Russian].

    Book  Google Scholar 

  45. E. R. Th. Kerstel and H. A. J. Meijer, “Optical isotope ratio measurements in hydrology,” in Isotopes in the Water Cycle, Ed. by P. K. Aggarwal, J. Gat, and K. F. O. Froehlich (Springer, Dordrecht, 2005), pp. 109–123.

    Google Scholar 

  46. P. Bergamaschi, M. Schupp, and G. W. Harris, “High-precision direct measurements of 13CH4/12CH4 and 12CH3D/12CH4 ratios in atmospheric methane sources by means of a long-path tunable diode laser absorption spectrometer,” Appl. Opt.33 (33), 7704–7716 (1994).

    Article  ADS  Google Scholar 

  47. D. W. Allan, “Statistics of atomic energy standard,” Proc. IEEE.54 (2), 221–231 (1966).

    Article  ADS  Google Scholar 

  48. P. Werle, R. Mucke, and R. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B.57, 131–139 (1993).

    Article  ADS  Google Scholar 

  49. S. V. Kireev, A. A. Kondrashov, S. L. Shnyrev, and N. V. Frolov, “Kalman’s method to improve accuracy of online 13C16O2 measurement in the exhaled human breath using tunable diode laser absorption spectroscopy,” Laser Phys. Lett.15, 095701 (2018).

    Article  ADS  Google Scholar 

  50. S. V. Kireev, A. A. Kondrashov, and S. L. Shnyrev, “Implementation of the adaptive Wiener filtering algorithm in the problem of measuring the 13CO2 content in expiratory air using the tunable diode laser absorption spectroscopy technique,” Laser Phys. Lett.16 (4), 045701 (2019).

    Article  ADS  Google Scholar 

  51. S. V. Kireev, A. A. Kondrashov, and S. L. Shnyrev, “Application of adaptive filters to improve online detection sensitivity of 13CO2 in a mixture with 12CO2 in expiratory air,” Laser Phys. Lett.16, 075701 (2019).

    Article  ADS  Google Scholar 

  52. J. Gaunt, “The analysis of heavy water by infra-red spectrometry,” Spectrochim. Acta.8 (2), 57–65 (1956).

    Article  ADS  Google Scholar 

  53. J. C. Kluyver and J. M. W. Milatz, “An infrared isotope analyzer,” Physica.19, 401–411 (1953).

    Article  ADS  Google Scholar 

  54. K. Luft, US Patent No. 2758216 (1956).

  55. H. Hummel, US Patent No. 3005097 (1961).

  56. J. Dimeff, US Patent No. 3679899 (1972).

  57. M. N. Todd and M. D. Milder, US Patent No. 3728540 (1973).

  58. D. W. Davies, US Patent No. 4027972 (1977).

  59. C. Irving, P. D. Klein, P. R. Navratil, and T. W. Boutton, “Measurement of 13CO2/12CO2 abundance by nondispersive infrared heterodyne radiometry as an alternative to gas isotope ratio mass spectrometry,” Anal. Chem.58, 2172–2178 (1986).

    Article  Google Scholar 

  60. D. E. Murnick and B. J. Peer, “Laser-based analysis of carbon isotope ratios,” Science.263, 945–947 (1994).

    Article  ADS  Google Scholar 

  61. M. A. Kerimkulov, V. N. Ochkin, S. Yu. Savinov, M. V. Spiridonov, and S. N. Tkhai, “Observation of an inverse isotope effect in the plasma-chemical decomposition of carbon dioxide,” JETP Lett.54, 212–215 (1991).

    ADS  Google Scholar 

  62. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: Theory and comparison among experimental methods,” Appl. Opt.31 (6), 707–717 (1992).

    Article  ADS  Google Scholar 

  63. T. Asakawa, M. Kanno, and K. Tonokura, “Diode laser detection of greenhouse gases in near-infrared region by wavelength modulation spectroscopy: Pressure dependence of the detection sensitivity,” Sensors.10, 4686–4699 (2010).

    Article  Google Scholar 

  64. E. A. Chernyshova, “Influence of the residual intensity variation on the characteristics of diode laser spectrometer with wave modulation,” Univ. News: Phys. Electron. No.1, 61–64 (2009) [in Russian].

    Google Scholar 

  65. G. Gagliardi, A. Castrillo, R. Q. Iannone, E. R. T. Kerstel, and L. Gianfrani, “High precision determination of 13CO2/12CO2 isotope ratio using a portable 2.008-μm diode-laser spectrometer,” Appl. Phys. B.77, 119–124 (2003).

    Article  Google Scholar 

  66. R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys.36, 2522–2524 (1965).

    Article  ADS  Google Scholar 

  67. A. Castrillo, G. Casa, E. Kerstel, and L. Gianfrani, “Diode laser absorption spectrometry for 13CO2/12CO2 isotope ratio analysis: Investigation of precision and accuracy levels,” Appl. Phys. B.81, 863–869 (2005).

    Article  ADS  Google Scholar 

  68. S. Schilt, L. Thevenaz, and P. Robert, “Wavelength modulation spectroscopy: Combined frequency and intensity laser modulation,” Appl. Opt.42 (3), 6728–6738 (2003).

    Article  ADS  Google Scholar 

  69. C. Dyroff, P. Weibring, A. Fried, D. Richter, J. G. Walega, A. Zahn, W. Freude, and P. Werle, “Stark-enhanced diode-laser spectroscopy of formaldehyde using a modified Herriott-type multipass cell,” Appl. Phys. B.88, 117–123 (2007).

    Article  ADS  Google Scholar 

  70. The Control on the Spectra of Molecular Lasers. FIAN Proceedings (Nauka, Moscow, 1992). Vol. 121 [in Russian].

  71. A. Chakaraborty, K. Ruxton, W. Johnstone, M. Lengden, and K. Duffin, “Elimination of residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy using an optical fiber delay line,” Opt. Express.17 (12), 9602–9607 (2009).

    Article  ADS  Google Scholar 

  72. S. N. Andreev, I. V. Nikolaev, V. N. Ochkin, S. Yu. Savinov, M. V. Spiridonov, and S. N. Tskhai, “Frequency modulation upon nonstationary heating of the p-n junction in high-sensitive diode laser spectroscopy,” Quantum Electron.37 (4), 399–404 (2007).

    Article  ADS  Google Scholar 

  73. J. U. White, “Long optical paths of large aperture,” J. Opt. Soc. Am.32, 285 (1942).

    Article  ADS  Google Scholar 

  74. D. Herriott, H. Kogelnik, and R. Kompfner, “Off-axis paths in spherical mirror interferometers,” Appl. Opt.3, 523–526 (1964).

    Article  ADS  Google Scholar 

  75. A. I. Nadezhdinskii, A. G. Berezin, S. M. Chernin, O. Ershov, and V. Kutnyak, “High sensitivity methane analyzer based on tuned near infrared diode laser,” Spectrochim. Acta A.55 (10), 2083–2089 (1999).

    Article  ADS  Google Scholar 

  76. S. M. Chernin, “Development of multipass matrix system,” J. Mod. Opt.44 (4), 619–632 (2001).

    Article  ADS  Google Scholar 

  77. S. M. Chernin, Multipass Cavity in Optics and Spectroscopy (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  78. S. N. Andreev, E. S. Mironchuk, I. V. Nikolaev, V. N. Ochkin, M. V. Spiridonov, and S. N. Tskhai, “High presision measurements of the 13CO2/12CO2 isotope ratio at atmospheric pressure in human breath using a 2 μm diode laser,” Appl. Phys. B.104 (1), 73–79 (2011).

    Article  ADS  Google Scholar 

  79. E. R. Crosson, K. N. Ricci, B. A. Richman, F. C. Chilese, T. G. Owano, R. A. Provencal, M. W. Todd, J. Glasser, A. A. Kachanov, and B. A. Paldus, “Stable isotope ratios using cavity ring-down spectroscopy: Determination of 13C/12C for carbon dioxide in human breath,” Anal. Chem.74, 2003–2007 (2002).

    Article  Google Scholar 

  80. I. V. Nikolaev, V. N. Ochkin, M. V. Spiridonov, and S. N. Tskhai, “Diode ring-down spectroscopy without intensity modulation in off-axis multipass cavity,” Spectrochim. Acta. A.66, 832–835 (2007).

    Article  ADS  Google Scholar 

  81. I. V. Nikolaev, V. N. Ochkin, G. M. Peters, M. V. Spiridonov, and S. N. Tskhai, “Recording weak absorption spectra by the phase-shift method with deep amplitude and frequency modulation using a diode laser and a high Q cavity,” Laser Phys.23, 035701 (2013).

    Article  ADS  Google Scholar 

  82. E. Kerstel and L. Gianfrani, “Advances in laser-based isotope ratio measurements: Selected applications,” Appl. Phys. B.92, 439–449 (2008).

    Article  ADS  Google Scholar 

  83. M. B. Esler, D. W. T. Griffith, S. R. Wilson, and L. P. Steele, “Precision trace gas analysis by FT-IR spectroscopy. 2. The 13C/12C isotope ratio of CO2,” Anal. Chem.72, 216–221 (2000).

    Article  Google Scholar 

  84. E. R. Crosson, K. N. Ricci, B. A. Richman, F. C. Chilese, T. G. Owano, R. A. Provencal, M. W. Todd, J. Glasser, A. A. Kachanov, and B. A. Paldus, “Stable isotope ratios using cavity ring-down spectroscopy: Determination of 13C/12C for carbon dioxide in human breath,” Anal. Chem.74, 2003–2007 (2002).

    Article  Google Scholar 

  85. D. D. Nelson, J. B. McManus, S. C. Herndon, M. S. Zahniser, B. Tuzson, and L. Emmenegger, “New method for isotopic ratio measurements of atmospheric carbon dioxide using a 4.3 μm quantum cascade laser,” Appl. Phys. B.90, 301–309 (2008).

    Article  ADS  Google Scholar 

  86. R. Dirk, B. P. Wert, A. Fried, P. Weibring, J. G. Walega, J. W. C. White, B. H. Vaughn, and F. K. Tittel, “High precision CO2 isotopologue spectrometer with a difference-frequency-generation laser source,” Opt. Lett.34 (2), 172–174 (2009).

    Article  ADS  Google Scholar 

  87. T. Rubin, T. von Hamderge, A. Helmke, and K. Heyne, “Quantitative determination of metabolism dynamics by real-time 13CO2 breath test,” J. Breath Res.5, 1–6 (2011).

    Article  Google Scholar 

  88. L. Croize, D. Mondeline, C. Camy-Peyret, C. Janssen, M. Lopez, M. Delmotte, and M. Schmidt, “Isotopic composition and concentration measurements of atmospheric CO2 with a diode laser making use of correlations between non-equivalent absorption cells,” Appl. Phys. B.101, 411–421 (2010).

    Article  ADS  Google Scholar 

  89. I. V. Nikolaev, V. N. Ochkin, and S. N. Tskhai, “Fast recording of weak absorption spectra in optical cavity using tunable laser,” Laser Phys. Lett.10, 115701 (2013).

    Article  ADS  Google Scholar 

  90. M. F. Witinski, D. C. Sayres, and J. G. Anderson, “High precision methane isotopologue ratio measurements at ambient mixing ratios using integrated cavity output spectroscopy,” Appl. Phys. B.102 (2), 375—380 (2011).

    Article  ADS  Google Scholar 

  91. E. R. T. Kerstel, G. Gagliardi, L. Gianfrani, H. A. J. Meijer, R. van Trigt, and R. Ramaker, “Determination of the 2H/1H, 17O/16O, and 18O/16O isotope ratios in water by means of tunable diode laser spectroscopy at 1.39 μm,” Spectrochim. Acta A.58, 2389 (2002).

    Article  ADS  Google Scholar 

  92. L. Gianfrani, G. Gagliardi, M. van Burgel, and E. Kerstel, “Isotope analysis of water by means of near-infrared dual-wavelength diode laser spectroscopy,” Opt. Express.11, 1566–1576 (2003).

    Article  ADS  Google Scholar 

  93. P. Sturm and A. Knohl, “Water vapour 2H and 18O measurements using off-axis integrated cavity output spectroscopy,” Atmos. Meas. Tech.3 (1), 67–7 (2010).

    Article  Google Scholar 

  94. J. Steinwagner, M. Milz, T. von Clarmann, N. Glatthor, U. Grabowski, M. Höpfner, G. P. Stiller, and T. Röckmann, “HDO measurements with MIPAS,” Atmos. Chem. Phys.7, 2601–2615 (2007).

    Article  ADS  Google Scholar 

  95. B. Lehmann, M. Wahlen, R. Zumbrunn, and H. Oescher, “Isotope analysis by infrared laser absorption spectroscopy,” Appl. Phys. B.13, 153–158 (1977).

    Article  ADS  Google Scholar 

  96. K. Uehara, K. Yamamoto, T. Kikugawa, and N. Yoshida, “Isotope analysis of environmental substances by a new laser-spectroscopic method utilizing different pathlengths,” Sens. Actuators B.74, 173–178 (2001).

    Article  Google Scholar 

  97. M. Wahlen and T. Yoshinari, “Oxygen isotope ratios in N2O from different environments,” Nature.313, 780–782 (1985).

    Article  ADS  Google Scholar 

  98. K. Heinrich, T. Fritsch, P. Hering, and M. Murtz, “Infrared laser-spectroscopic analysis of 14NO and 15NO in human breath,” Appl. Phys. B.75, 281–286 (2009).

    Article  ADS  Google Scholar 

  99. H. Sabana, N. Fritsch, M. Buomo Onana, P. Hering, and M. Murtz, “Simultaneous detection of 14NO and 15NO using Faradey modulation spectroscopy,” Appl. Phys. B.96, 535–544 (2009).

    Article  ADS  Google Scholar 

  100. Y. Matsumi, M. Kishigami, N. Tanaka, M. Kawasaki, and G. Inoue, “Isotope 18O/16O ratio measurements of water vapor by use of photoacoustic spectroscopy,” Appl. Opt.37, 6558–6562 (1998).

    Article  ADS  Google Scholar 

  101. S. M. Anderson, J. Morton, and K. Mauersberger, “Laboratory measurements of ozone isotopomers by tunable diode laser absorption spectroscopy,” Chem. Phys. Lett.156, 175–180 (1989).

    Article  ADS  Google Scholar 

  102. A. G. Berezin, S. L. Malyugin, A. I. Nadezhdinskii, D. Yu. Namestnikov, Ya. Ya. Ponurovskii, D. B. Stavrovskii, Yu. P. Shapovalov, I. E. Vyazov, V. Ya. Zaslavskii, Yu. G. Selivanov, N. M. Gorshunov, G. Yu. Grigoriev, and Sh. Sh. Nabiev, “UF6 enrichment measurements using TDLS techniques,” Spectrochim. Acta A.66, 796–802 (2007).

    Article  ADS  Google Scholar 

  103. G. Yu. Grigor’ev, A. S. Lebedeva, S. L. Malyugin, Sh. Sh. Nabiev, A. I. Nadezhdinskii, and Ya. Ya. Ponu-rovskii, “Investigation of 235UF6 and 238UF6 spectra in the mid-IR range,” At. Energy.104 (5), 398–403 (2008).

    Article  Google Scholar 

  104. E. R. Th. Kerstel, R. van Trigt, J. Reuss, and H. A. J. Meijer, “Simultaneous determination of the 2H/1H, 17O/16O, and 18O/16O isotope abundance ratios in water by means of laser spectrometry,” Anal. Chem.71, 5297–5303 (1999).

    Article  Google Scholar 

  105. E. R. T. Kerstel, R. Q. Iannone, M. Chenevier, S. Kassi, H.-J. Jost, and D. Romanini, “A water isotope (2H, 17O, and 18O) spectrometer based on optical feedback cavity-enhanced absorption for in situ airborne applications,” Appl. Phys. B.85, 397–406 (2006).

    Article  ADS  Google Scholar 

  106. A. Castrillo, G. Casa, M. van Burgel, D. Tedesco, and L. Gianfrani, “First field determination of the 13C/12C isotope ratio in volcanic CO2 by diode-laser spectrometry,” Opt. Express.12, 6515 (2004)

    Article  ADS  Google Scholar 

  107. A. Castrillo, G. Casa, and L. Gianfrani, “Oxygen isotope ratio measurements in CO2 by means of a continuous-wave quantum cascade laser at 4.3-μm,” Opt. Lett.32 (20), 3047–3049 (2007).

    Article  ADS  Google Scholar 

  108. M. B. Esler, D. W. T. Griffith, F. Turatti, S. R. Wilson, T. Rahn, and H. Zhang, “N2O concentration and flux measurements and complete isotopic analysis by FTIR spectroscopy,” Chemosphere – Global Change Science.2, 445–454 (2000).

    Article  ADS  Google Scholar 

  109. F. Turatti, D. W. T. Griffith, S. R. Wilson, M. B. Esler, T. Rahn, H. Zhang, and G. A. Blake, “Positionally dependent 15N fractionation factors in the UV photolysis of N2O determined by high resolution FTIR spectroscopy,” Geophys. Res. Lett.27, 2489–2492 (2000).

    Article  ADS  Google Scholar 

  110. L. Gianfrani, G. Gagliardi, M. van Burgel, and E. R. Th. Kerstel, “Isotope analysis of water by means of near-infrared dual-wavelength diode laser spectroscopy,” Opt. Express.11, 1566–1576 (2003).

    Article  ADS  Google Scholar 

  111. A. A. Zaytsev, I. V. Nikolaev, V. N. Ochkin, and S. N. Tskhai, “External-cavity diode laser spectrometer for measuring the concentration ratio 13CO2/12CO2 by absorption in the range of 1.6 μm,” Quantum Electron.45, 680–684 (2015).

    Article  ADS  Google Scholar 

  112. A. V. Bernatskiy, V. V. Lagunov, and V. N. Ochkin, “Measurement of the concentration of isotopes of water molecules in a discharge in an inert gas with the addition of H2O and D2 vapours by external-cavity diode laser spectroscopy,” Quantum Electron.49 (2), 157–161 (2019).

    Article  ADS  Google Scholar 

  113. F. Fjodorow, O. Hellmig, and V. M. Baev, “A broadband Tm/Ho-doped fiber laser tunable from 1.8 to 2.09 μm for intracavity absorption spectroscopy,” Appl. Phys. B.124, 62 (2018).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to Prof. G.A. Lyakhov for the thorough reviewing and to Dr. A.V. Bernatskiy for his help in preparing the manuscript.

Funding

This study was supported by the Russian Science Foundation, project no. 19-12-00310.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Ochkin.

Additional information

Translated by Yu. Sin’kov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ochkin, V.N. Optical Methods of Diagnostics of the Isotopic Composition of Natural and Technological Media: A Review. Phys. Wave Phen. 28, 21–48 (2020). https://doi.org/10.3103/S1541308X20010069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X20010069

Navigation