Skip to main content
Log in

Simultaneous detection of 14NO and 15NO using Faraday modulation spectroscopy

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We describe a technique of simultaneous detection of 14NO and 15NO by means of Faraday Modulation Spectroscopy (FAMOS) based on a cw distributed feedback quantum cascade laser (QCL) operating near 5.4 μm. FAMOS is a spectroscopic method for selective, sensitive, and time-resolved detection of free radical molecules such as NO, in the mid-infrared spectral region. The selected spectral lines are the Q (1.5) for 15NO located at 1842.76 cm−1 and the P (9.5) for 14NO located at 1842.93 cm−1. The detection limit (1σ) of 6 ppb \(/\sqrt{\mathrm{Hz}}\) for 15NO and 62 ppb \(/\sqrt{\mathrm{Hz}}\) for 14NO has been achieved. The simultaneous detection was performed using a fast laser frequency switching between the two isotopologues with a time resolution of 2 s. The isotope ratio (δ 15N) has been determined with a precision (1σ) of 0.52‰ at 800-s averaging time for 100 ppm NO-gas with a time resolution of 2 s. δ 15N is determined after NO release from nitrite by chemical reduction with potassium iodine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.G. Knowles, S. Moncada, Nitric oxide syntheses in mammals. Biochem. J. 298, 249–258 (1994)

    Google Scholar 

  2. C.V. Suschek, T. Schewe, H. Sies, K.D. Kröncke, Nitrite, a naturally occurring precursor of nitric oxide that acts like a ‘prodrug’. Biol. Chem. 387, 499–506 (2006)

    Article  Google Scholar 

  3. M.T. Gladwin, J.H. Crawford, R.P. Patel, The biochemistry of nitric oxide, nitrite and hemoglobin, role in blood flow regulation. Free Radic. Biol. Med. 36, 707–717 (2004)

    Article  Google Scholar 

  4. Paunel, , Enzyme-independent nitric oxide formation during UVA challenge of human skin, characterization, molecular sources, and mechanisms. Free Radic. Biol. Med. 38, 606–615 (2005)

    Article  Google Scholar 

  5. H. Heller, R. Gabler, S. Brand, A. Jentsch, K. Granitza, B. Eixmann, T. Breitbach, C. Franz, Y. Ukin, W. Urban, K.D. Schuster, Pulmonary 15NO uptake in man. Eur. J. Physiol. 446, 256–260 (2003)

    Google Scholar 

  6. L.S. Rothman, D. Jacquemart, D.C. Barbe, D.C. Berner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.M. Flaud, R.R. Gamache, A. Goldman, J.M. Hartmann, K.W. Jucks, A.G. Maki, J.Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, The HITRAN 2004 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005)

    Article  ADS  Google Scholar 

  7. J.C. Avice, A. Ourry, P. Laine, N. Roland, S. Louahlia, E. Roussel, S. Brookes, J. Boucaud, A rapid and reliable method for NO quantification and 15NO/14NO determination using isotope ratio mass spectroscopy, an application for the detection of NO synthesis in propionibacteria. Rapid Commun. Mass. Spectrom. 13, 1197–1200 (1999)

    Article  Google Scholar 

  8. C. Mitscherling, J. Lauenstein, C. Maul, A.A. Veselov, O.S. Vasyutinskii, K.H. Gericke, Non-invasive and isotope-selective lacer-induced fluorescence spectroscopy of nitric oxide in exhaled air. J. Breath Rep. 1, 026003 (2007)

    Article  ADS  Google Scholar 

  9. D. Halmer, G. von Basum, M. Horstjann, P. Hering, M. Mürtz, Time resolved simultaneous detection of 14NO and 15NO via mid-infrared cavity leak.out spectroscopy. Isot. Environ. Health Stud. 41(4), 303–311 (2005)

    Article  Google Scholar 

  10. T. Fritsch, P. Brouzos, K. Heinrich, M. Kelm, T. Rassaf, P. Hering, P. Kleinbongard, M. Mürtz, NO detection in biological samples: Differentiation of 14NO and 15NO using infrared laser spectroscopy. Nitric Oxide 19, 50–56 (2008)

    Article  Google Scholar 

  11. M. Koch, X. Luo, P. Mürtz, W. Urban, K. Mörike, Detection of small traces of 15N2 and 14N2 by Faraday LMR Spectroscopy of the corresponding isotopomers of nitric oxide. Appl. Phys. B 64, 683 (1997)

    Article  ADS  Google Scholar 

  12. H. Ganser, W. Urban, J.M. Brown, The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser. Mol. Phys. 101, 545 (2003)

    Article  ADS  Google Scholar 

  13. H. Ganser, M. Horstjann, C.V. Suschek, P. Hering, M. Mürtz, Online monitoring of biogenic nitric oxide with a quantum cascade laser-based Faraday modulation technique. Appl. Phys. B 78, 513 (2004)

    Article  ADS  Google Scholar 

  14. T. Fritsch, M. Horstjann, D. Halmer, Sabana, P. Hering, M. Mürtz, Magnetic Faraday modulation spectroscopy of the 1–0 band of 14NO and 15NO. Appl. Phys. B (2008). doi:10.1007/s00340-008-3223-z

    Google Scholar 

  15. P. Werle, R. Mucke, F. Slemr, The limits of signal averaging in atmospheric trace gas monitoring by tunable diode-laser absorption-spectroscopy. Appl. Phys. B 57, 131–139 (1993)

    Article  ADS  Google Scholar 

  16. B. Tuzson, M.J. Zeeman, M.S. Zahniser, L. Emmegger, Quantum cascade laser based spectrometer for in situ stable carbon dioxide isotope measurements. Infrared. Phys. Technol. 51, 198–206 (2008)

    Article  ADS  Google Scholar 

  17. H. Waechter, J. Mohn, B. Tuzson, L. Emmenegger, M.W. Sigrist, Determination of N2O isotopomers with quantum cascade laser based absorption spectroscopy. OSA 16(12) (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Sabana.

Additional information

Sabana’s permanent adress: CEPAMOOQ, University of Douala, P.O. Box 8580, Douala, Cameroon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabana, H., Fritsch, T., Boyomo Onana, M. et al. Simultaneous detection of 14NO and 15NO using Faraday modulation spectroscopy. Appl. Phys. B 96, 535–544 (2009). https://doi.org/10.1007/s00340-009-3602-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-009-3602-0

PACS

Navigation